Skip to main content

Spatial Reasoning: No Need for Visual Information

  • Conference paper
  • First Online:
Spatial Information Theory (COSIT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2205))

Included in the following conference series:

Abstract

One of the central questions of spatial reasoning research is whether the underlying processes are inherently visual or spatial. The article reports a dual-task experiment that was conducted to explore the visual and/or spatial nature of human spatial reasoning. The main tasks were inferences based on a spatial version of the interval calculus introduced by Allen (1983). The secondary tasks were presented visually or acoustically, and were either spatial or non-spatial. The results indicate that spatial reasoning is mainly based on the construction and inspection of spatial layouts, whereas no evidence of the involvement of visual representations and processes was found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26, 832–843.

    Article  MATH  Google Scholar 

  • Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.

    Google Scholar 

  • Baddeley, A. D. & Hitch, G. (1974). Working memory. In G. H. Bower (Eds.), The psychology of learning and motivation (vol. 8, pp. 47–89). New York: Academic Press.

    Google Scholar 

  • Baddeley, A.D. & Lieberman, K. (1980). Spatial working memory. In R. Nickerson (Ed.), Attention and performance (Bd. 8). Hillsdale, N. J.: Lawrence Erlbaum.

    Google Scholar 

  • Byrne, R.M.J. & Johnson-Laird, P.N. (1989). Spatial reasoning. Journal of Memory and Language, 28, 564–575.

    Article  Google Scholar 

  • Clement, C.,A. & Falmagne, R.J. (1986). Logical reasoning, world knowledge, and mental imagery: Interconnections in cognitive processes. Memory & Cognition, 4, 299–307.

    Google Scholar 

  • Cohn, A. G. (1997). Qualitative spatial representation and reasoning techniques In KI-97: Advances in Artificial Intelligence (pp. 1–30). Berlin: Springer.

    Google Scholar 

  • DeSoto, L.B., London, M., & Handel, M.S. (1965). Social reasoning and spatial paralogic. Journal of Personality and Social Psychology, 2, 513–521

    Article  Google Scholar 

  • Egan, D.E & Grimes-Farrow, D.D. (1982). Differences in mental representations spontaneously adopted for reasoning. Memory & Cognition, 10, 297–307.

    Google Scholar 

  • Finke, R.A. (1989). Principles in mental imagery. Cambridge, MA: MIT Press.

    Google Scholar 

  • Freksa, C. (1991). Qualitative spatial reasoning. In D. M. Mark & A. U. Frank (Eds.), Cognitive and linguistic aspects of geographic space (pp. 361–372). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Glasgow, J.I. & Papadias, D. (1992). Computational Imagery, Cognitive Science, 16, 355–394.

    Article  Google Scholar 

  • Glasgow, J. Narayanan, N.H., & Chandrasekaran, B. (1995) (Eds.). Diagrammatic reasoning. Cambridge: AAAI Press.

    Google Scholar 

  • Glenberg, A.M., Kruley, P., & Langston, W.E. (1994). Analogical processes in comprehension. In M. A. Gernsbacher (Ed.), Handbook of Psycholinguistics (pp. 609–640). New York: Academic Press.

    Google Scholar 

  • Glenberg, A.M. & Langston, W.E. (1992). Comprehension of illustrated text: Pictures help to build mental models. Journal of Memory and Language, 31, 129–151.

    Article  Google Scholar 

  • Gopher, D. & Donchin, E. (1986). Workload-An examination of the concept. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance, Vol. 2, Cognitive processes and performance (pp. 41,1–41,49). New York: Wiley & Sons.

    Google Scholar 

  • Güsgen, H. W. (1989). Spatial reasoning based on Allen’s temporal logic (Technical Report ICSI TR-89-049). Berkeley, CA: International Computer Science Institute.

    Google Scholar 

  • Hernández, D. (1994). Qualitative representation of spatial knowledge. Berlin: Springer.

    MATH  Google Scholar 

  • Huttenlocher, J. (1968). Constructing spatial images: A strategy in reasoning. Psychological Review, 75, 550–560.

    Article  Google Scholar 

  • Johnson-Laird, P.N. (1972). The three-term series problem. Cognition, 1, 57–82.

    Article  Google Scholar 

  • Johnson-Laird, P.N. (1983). Mental Models. Cambridge: Cambridge University Press.

    Google Scholar 

  • Johnson-Laird, P.N. (1996). Space to think. In P. Bloom et al. (Eds.), Language and Space (pp. 437–462). Cambridge, MA: MIT Press.

    Google Scholar 

  • Johnson-Laird, P. N. & Byrne, R. (1991). Deduction. Hove (UK): Erlbaum.

    Google Scholar 

  • Johnson-Laird, P.N., Byrne, R., & Tabossi, P. (1989). Reasoning by model: the case of multiple quantifiers. Psychological Review, 96, 658–673.

    Article  Google Scholar 

  • Knauff, M. (1999). The cognitive adequacy of Allen’s interval calculus for qualitative spatial representation and reasoning. Spatial Cognition and Computation, 3, 261–290.

    Article  Google Scholar 

  • Knauff, M. & Johnson-Laird, P.N. (2000). Visual and spatial representations in spatial reasoning. In Proceedings of the 22nd Annual Conference of the Cognitive Science Society (pp. 759–765). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Knauff, M., Jola, C., Strube, G., Rauh, R., & Schlieder, C. (2000). Visuo-spatial working memory involvement in spatial reasoning. Under review.

    Google Scholar 

  • Knauff, M., Rauh, R., & Renz, J. (1997). A cognitive assessment of topological spatial relations: Results from an empirical investigation. In S. C. Hirtle & A. U. Frank (Eds.), Spatial information theory. A theoretical basis for GIS. Proceedings of COSIT’ 97 (pp.193–206). New York: Springer.

    Chapter  Google Scholar 

  • Knauff, M., Rauh, R., & Schlieder, C. (1995). Preferred mental models in qualitative spatial reasoning: A cognitive assessment of Allen’s calculus. In Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society (pp. 200–205). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Knauff, M., Rauh, R., Schlieder, C., & Strube, G. (1998a). Mental models in spatial reasoning. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial Cognition–An interdisciplinary approach to representing and processing spatial knowledge (pp. 267–291). Lecture Notes in Computer Science, Bd. 1404. Berlin: Springer.

    Google Scholar 

  • Knauff, M., Rauh, R., Schlieder, C., & Strube, G. (1998b). Continuity effect and figural bias in spatial relational inference. In Proceedings of the Twentieth Annual Conference of the Cognitive Science Society (pp. 573–578). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Kosslyn, S.M. (1980). Image and mind. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Kosslyn, S.M. (1994). Image and brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Logie, R.H. (1995). Visuo-spatial working memory. Hove: Lawrence Erlbaum.

    Google Scholar 

  • Mukerjee, A. & Joe, G. (1990). A qualitative model for space. Proceedings AAAI-90, 721–727.

    Google Scholar 

  • Newstead, S.E., Pollard P., & Griggs, R.A. (1986). Response bias in relational reasoning. Bulletin of the Psychonomic Society, 2, 95–98.

    Google Scholar 

  • Pearson, D.G., Logie, R.H., & Gillhooly, K.J. (1999). Verbal representations and spatial manipulation during mental synthesis. European Journal of Experimental Psychology, 11A, 295–314.

    Google Scholar 

  • Potts, G.R. & Scholz, K.W. (1975). The internal representation of a three-term series problem. Journal of Verbal Learning and Verbal Behavior, 14, 439–452.

    Article  Google Scholar 

  • Richardson, J.T.E. (1987). The role of mental imagery in models of transitive inference. British Journal of Psychology, 78, 189–203.

    Google Scholar 

  • Shaver, P., Pierson, L., & Lang, S. (1974). Converging evidence for the functional significance of imagery in problem solving. Cognition, 3, 359–375.

    Article  Google Scholar 

  • Shepard, R. N. & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, MA: MIT Press.

    Google Scholar 

  • Stein, L.A. (1994). Imagination and situated cognition. Journal of Experimental and Theoretical Intelligence, 6, 393–407.

    Article  Google Scholar 

  • Sternberg, R. J. (1980). Representation and process in linear syllogistic reasoning. Journal of Experimental Psychology: General, 109, 119–159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knauff, M., Jola, C., Strube, G. (2001). Spatial Reasoning: No Need for Visual Information. In: Montello, D.R. (eds) Spatial Information Theory. COSIT 2001. Lecture Notes in Computer Science, vol 2205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45424-1_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-45424-1_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42613-4

  • Online ISBN: 978-3-540-45424-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics