Skip to main content

Geometric Parameters of Kernel Machines

  • Conference paper
  • First Online:
Computational Learning Theory (COLT 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2375))

Included in the following conference series:

  • 1327 Accesses

Abstract

We investigate the fat-shattering dimension and the localized Rademacher averages of kernel machines and their connection to the eigenvalues associated with the kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Ball: Volumes of sections on cubes and related problems, in Lecture Notes in Mathematics 1470, 36–47, Springer Berlin.

    Google Scholar 

  2. P. L. Bartlett, O. Bousquet, S. Mendelson: Localized Rademacher Averages, these proceedings.

    Google Scholar 

  3. F. Cucker, S. Smale: On the mathematical foundations of learning, preprint.

    Google Scholar 

  4. V. De la Peña, E. Giné: Decoupling: from dependence to independence, Springer, 1999.

    Google Scholar 

  5. P. Massart: About the constants in Talagrand’s concentration inequality for empirical processes, Annals of Probability, 28(2) 863–884, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Mendelson: Rademacher averages and phase transitions in Glivenko-Cantelli classes, IEEE transactions on Information Theory, Jan, 2002.

    Google Scholar 

  7. S. Mendelson: Improving the sample complexity using global data, to appear, IEEE transactions on Information Theory.

    Google Scholar 

  8. S. Mendelson, R. Vershynin: Entropy, Combinatorial Dimensions and Random Averages, these proceedings.

    Google Scholar 

  9. M. Meyer, A. Pajor: Sections of the unit ball of l p n, Journal of Functional Analysis 80(1), 109–123, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  10. V. D. Milman, G. Schechtman: Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Mathematics 1200, Springer 1986.

    Google Scholar 

  11. G. Pisier: The volume of convex bodies and Banach space geometry, Cambridge University Press, 1989.

    Google Scholar 

  12. M. Talagrand: Sharper bounds for Gaussian and empirical processes, Annals of Probability, 22(1), 28–76, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. W. Van der Vaart, J.A. Wellner: Weak convergence and Empirical Processes, Springer-Verlag, 1996.

    Google Scholar 

  14. R. C. Williamson, B. Scheolkopf, A. Smola: Generalization performance of regularization networks and support vector machines via entropy numbers of compact networks, IEEE transactions on Information Theory.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mendelson, S. (2002). Geometric Parameters of Kernel Machines. In: Kivinen, J., Sloan, R.H. (eds) Computational Learning Theory. COLT 2002. Lecture Notes in Computer Science(), vol 2375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45435-7_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45435-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43836-6

  • Online ISBN: 978-3-540-45435-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics