Abstract
Simulation of specifications is introduced as a unification and generalisation of refinement mappings, history variables, forward simulations, prophecy variables, and backward simulations.
Eternity variables are introduced as a more powerful alternative for prophecy variables and backward simulations. This formalism is semantically complete: every simulation is a composition of a forward simulation, an extension with eternity variables, and a refinement mapping. The finiteness and continuity conditions of the Abadi-Lamport Theorem are unnecessary for this result.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Computer Science 82 (1991) 253–284
Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Programming Languages and Systems 17 (1995) 507–534.
Cohen, E., Lamport, L.: Reduction in TLA. In: Sangiorgi, D., Simone, R. de (eds.): CONCUR’ 98. Springer V. 1998 (LNCS 1466), pp. 317–331.
He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B., Wilhelm, R. (eds.): ESOP’86 pp. 187–196. Springer Verlag, 1986 (LNCS 213).
Hesselink, W.H.: Eternity variables to prove simulation of specifications (draft). http://www.cs.rug.nl/~wim/pub/whh261.pdf
Jonsson, B.: Simulations between specifications of distributed systems. In: Baeten, J.C.M., Groote, J.F. (eds.): CONCUR’91. Springer V. 1991 (LNCS 527), pp. 346–360.
Jonsson, B., Pnueli, A., Rump, C.: Proving refinement using transduction. Distributed Computing 12 (1999) 129–149.
Lamport, L.: Critique of the Lake Arrowhead three. Distributed Computing 6 (1992) 65–71.
Lamport, L.: The temporal logic of actions. ACM Trans. on Programming Languages and Systems 16 (1994) 872–923.
Lipton, R.J.: Reduction: A method of proving properties of parallel programs. Communications of the ACM 18 (1975) 717–721.
Lynch, N., Vaandrager, F.: Forward and backward simulations, Part I: Untimed systems. Information and Computation 121 (1995) 214–233.
Milner, R.: An algebraic definition of simulation between programs. In: Proc. 2nd Int. Joint Conf. on Artificial Intelligence. British Comp. Soc. 1971. Pages 481–489.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hesselink, W.H. (2002). Eternity Variables to Simulate Specifications. In: Boiten, E.A., Möller, B. (eds) Mathematics of Program Construction. MPC 2002. Lecture Notes in Computer Science, vol 2386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45442-X_8
Download citation
DOI: https://doi.org/10.1007/3-540-45442-X_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43857-1
Online ISBN: 978-3-540-45442-7
eBook Packages: Springer Book Archive