Skip to main content

Constructing NFAs by Optimal Use of Positions in Regular Expressions

  • Conference paper
  • First Online:
Combinatorial Pattern Matching (CPM 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2373))

Included in the following conference series:

Abstract

We give two new algorithms for constructing small nondeterministic finite automata (NFA) from regular expressions. The first constructs NFAs with ε-moves (εNFA) which are smaller than all the other εNFAs obtained by similar constructions. Their size is at most 3/2|α| + 5/2, where α is the regular expression. The second constructs NFAs. It uses ε-elimination in the εNFAs we just introduced and builds a quotient of the well-known position automaton. Our NFA is always smaller and faster to compute than the position automaton. It uses optimally the information from the positions of a regular expression.

Research partially supported by NSERC grant R3143A01.

Research partially supported by NSERC grant OGP0041630.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A., Sethi, R., Ullman, J., Compilers: Principles, Techniques, and Tools, Addison-Wesley, MA, 1988.

    Google Scholar 

  2. Antimirov, V., Partial derivatives of regular expressions and finite automaton constructions, Theoret. Comput. Sci. 155 (1996) 291–319.

    Article  MATH  MathSciNet  Google Scholar 

  3. Berry, G, Sethi, R., From regular expressions to deterministic automata, Theoret. Comput. Sci. 48 (1986) 117–126.

    Article  MATH  MathSciNet  Google Scholar 

  4. Brüggemann-Klein, A., Regular expressions into finite automata, Theoret. Comput. Sci. 120 (1993) 197–213.

    Article  MATH  MathSciNet  Google Scholar 

  5. Brzozowski, J., Derivatives of regular expressions, J. ACM 11 (1964) 481–494.

    Article  MATH  MathSciNet  Google Scholar 

  6. Champarnaud, J.-M., Ziadi, D., New finite automaton constructions based on canonical derivatives, Proc. of CIAA 2000, LNCS 2088, Springer, 2001, 94–104.

    Google Scholar 

  7. Champarnaud, J.-M., Ziadi, D., Computing the equation automaton of a regular expression in O(s 2) space and time, Proc. of 12th Combinatorial Pattern Matching (CPM 2001), LNCS 2089, Springer, 2001, 157–168.

    Google Scholar 

  8. Chang, C.-H., Paige, R., From regular expressions to DFA’s using compressed NFA’s, Theoret. Comput. Sci 178 (1997) 1–36.

    Article  MATH  MathSciNet  Google Scholar 

  9. Crochemore, M., Hancart, C., Automata for pattern matching, in: G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Vol. II, Springer-Verlag, Berlin, 1997, 399–462.

    Google Scholar 

  10. Friedl, J., Mastering Regular Expressions, O’Reilly, 1998.

    Google Scholar 

  11. Glushkov, V. M., The abstract theory of automata, Russian Math. Surveys 16 (1961) 1–53.

    Article  Google Scholar 

  12. Hagenah, C., Muscholl, A., Computing ε-free NFA from regular expressions in O(n log2(n)) time, Theor. Inform. Appl. 34(4) (2000) 257–277.

    Article  MATH  MathSciNet  Google Scholar 

  13. Hopcroft, J., An n log n algorithm for minimizing states in a finite automaton, Proc. Internat. Sympos. Theory of machines and computations, Technion, Haifa, 1971, Academic Press, New York, 1971, 189–196.

    Google Scholar 

  14. Hopcroft, J. E., Ullman, J. D., Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, Mass., 1979.

    MATH  Google Scholar 

  15. Hromkovic, J., Seibert, S., Wilke, T., Translating regular expressions into small ε-free nondeterministic finite automata, J. Comput. System Sci. 62(4) (2001) 565–588.

    Article  MATH  MathSciNet  Google Scholar 

  16. McNaughton, R., Yamada, H., Regular expressions and state graphs for automata, IEEE Trans. on Electronic Computers 9(1) (1960) 39–47.

    Article  Google Scholar 

  17. Sippu, S., Soisalon-Soininen, E., Parsing Theory: I Languages and Parsing, EATCS Monographs on Theoretical Computer Science, Vol. 15, Springer-Verlag, New York, 1988.

    MATH  Google Scholar 

  18. Thompson, K., Regular expression search algorithm, Comm. ACM 11(6) (1968) 419–422.

    Article  MATH  Google Scholar 

  19. Yu, S., Regular Languages, in: G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Vol. I, Springer-Verlag, Berlin, 1997, 41–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ilie, L., Yu, S. (2002). Constructing NFAs by Optimal Use of Positions in Regular Expressions. In: Apostolico, A., Takeda, M. (eds) Combinatorial Pattern Matching. CPM 2002. Lecture Notes in Computer Science, vol 2373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45452-7_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-45452-7_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43862-5

  • Online ISBN: 978-3-540-45452-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics