Abstract
Let p be a prime and let q:= p N. Let E be an elliptic curve over F q. We are interested in efficient algorithms to compute the order of the group E(F q) of F q-rational points of E. An l-adic algorithm, known as the SEA algorithm, computes #E(F q) with O((logq)4+ɛ) bit operations (with fast arithmetic) and O((logq)2) memory. In this article, we survey recent advances in p-adic algorithms. For a fixed small p, the computational complexity of the known fastest p-adic point counting algorithm is O(N 3+ɛ) in time and O(N 2) in space. If we accept some precomputation depending only on p and N or a certain restriction on N, the time complexity is reduced to O(N 2.5+ɛ) still with O(N 2) space requirement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A. V., Hopcroft, J. E., Ullman, J. D.: “The design and analysis of computer algorithms”. Reading, Mass.: Addison-Wesley pub. 1974.
Ankeny, N.C.: The least quadratic non residue. Ann. of Math. 55 (1952) 65–72.
Blake, I.F., Seroussi, G., Smart, N.P.: “Elliptic curves in cryptography”. London Math. Soc. Lecture Note Series, 265. Cambridge: Cambridge U.P. 1999.
Borwein, J.-M., Borwein, P.-B.: “Pi and the AGM”. Canadian Math. Soc. series of monographs and Adv. texts., New York: Wiley-Interscience Pub. 1987.
Bost, J.-B., Mestre, J.-F.: Moyenne arithmético-géométrique et périodes des courbes de genre 1 et 2. Gaz. Math. 38 (1988) 36–64.
Cantor, D. G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inform. 28 (1991) 693–701.
Cassels, J. W. S.: A note on the division values of ℘(u). Proc. Cambridge Philos. Soc. 45 (1949) 167–172.
Chebyshev, P.L.: Mémoire sur les nombres premiers. J. Math. Pures Appl. 17 (1852) 366–390 (∄uvres, I-5).
Cohen, H.: “A course in computational algebraic number theory”. GTM, 138. Barlin: Springer-Verlag 1993.
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9 (1990) 251–280.
Couveignes, J.-M.: “Quelques calculs en théorie des nombres”. Université de Bordeaux I: Thése 1994.
Couveignes, J.-M.: Computing l-isogenies using the p-torsion, Algorithmic number theory (Telence, 1996), Lecture Notes in Comput. Sci., 1122, Barlin: Springer, 1996.
Couveignes, J.-M., Morain, F.: Schoof’s algorithm and isogeny cycles, Algorithmic number theory (Ithaca, NY, 1994), Lect. Notes in Comput. Sci., 877, 43–58, Barlin: Springer, 1994.
Dieudonné, J.: Sur les fonctions continues p-adiques. Bull. Sci. Math. 68 (1944) 79–85.
Dwork, B.: On the rationality of the zeta functions of an algebraic variety. Amer. J. Math. 82 (1960) 631–648.
Edwards, H.M.: “Riemann’s zeta function”. New York and London: Academic Press 1974.
Elkies, N.D.: Elliptic and modular curves over finite fields and related computational issues, Computational perspectives on number theory (Chicago, IL, 1995), AMS/IP Stud. Adv. Math., 7, 21–76, Providence, RI: AMS, 1998.
Enge, A.: “Elliptic curves and their applications to cryptography: An introduction”. Boston, Dordrecht, London: Kluwer Acad. Pub. 1999.
Fouquet, M., Gaudry, P., Harley, R.: An extension of Satoh’s algorithm and its implementation. J. Ramanujan Math. Soc. 15 (2000) 281–318.
Frey, G.: Applications of arithmetical geometry to cryptographic constructions, Finite fields and applications (Augsburg, 1999), 128–161, Barlin: Springer, 2001.
Gaudry, P.: Algorithms for counting points on curves, (2001) Slides at ECC2001, Waterloo, Oct. 31, 2001, Available at http://www.cacr.math.uwaterloo.ca/-conferences/2001/ecc/slides.html.
Gaudry, P., Gürel, N.: An extension of Kedlaya’s algorithm for counting points of superelliptic curves, Advances in Cryptology-ASIACRYPT 2001, Lect. Notes in Comput. Sci., 2248, 480–494, ed. Boyd, C., Berlin, Heidelbert: Springer Verlag, 2001.
Gaudry, P., Harley, R.: Counting points on hyperelliptic curves over finite fields, ANTS-IV, Lect. Notes in Comput. Sci., 1838, 313–332, Springer, 2000.
Harley, R.: Counting points with the arithmetic-geometric mean(joint work with J.-F. Mestre and P. Gaudry), Eurocrypt 2001, Rump session, 2001.
Harley, R., et al.: On the generation of secure elliptic curves using an arithmetic-geometric mean iteration, (in preparation).
Henniart, G., Mestre, J.-F.: Moyenne arithmético-géométrique p-adique. C.R. Acad. Sci. Paris Sér. I Math. 308 (1989) 391–395.
Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata. Soviet physics doklady 7 (1963) 595–596.
Kedlaya, K.: Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology, (2001) Preprint, available at http://arXiv.org/abs/math/0105031.
Kim, H., Park, J., Cheon, J., Park, J., Kim, J., Hahn, S.: Fast elliptic curve point counting using Gaussian Normal Basis, (2001) preprint.
Knuth, D.E.: “Seminumerical algorithm”. The art of computer programming, 2. Reading, Mass.: Addison-Wesley Pub. Co. 1969.
Koblitz, N.: “p-adic analysis: a short course on recent work”. London Math. Soc. Lect. Note Ser., 46. Cambridge-New York: Cambridge University Press 1980.
Koblitz, N.: “p-adic numbers, p-adic analysis, and zeta-functions (2nd ed.)”. GTM, 58. New York: Springer 1984.
Lauder, A., Wan, D.: Computing zeta functions of Artin-Schreier curves over finite fields, (2001) preprint.
Lauder, A., Wan, D.: Counting points on varieties over finite fields of small characteristic, (2001) preprint.
Lercier, R.: Computing isogenies in F2 n, Algorithmic number theory II(Talence, 1996), Lecture Notes in Comput. Sci., 1122, 197–212, Berlin: Springer, 1996.
Lubin, J., Serre, J.-P., Tate, J.: Elliptic curves and formal groups, (1964) Mimeographed notes, available at http://www.ma.utexas.edu/users/voloch/lst.-html.
Matsuo, K., Chao, J., Tsujii, S.: An improved baby step giant step algorithm for point counting of hyperelliptic curves over finit fields, This volume, 2002.
Messing, W.: “The crystals associated to Barsotti-Tate groups: with applications to Abelian schemes”. Lect. Notes in Math., 264. Berin-Heidelberg-New York: Springer 1972.
Monsky, P.: Formal cohomology. II. The cohomology of sequence of a pair. Ann. of Math. 88 (1968) 218–238.
Monsky, P.: Formal cohomology. III. Fixed point theorems. Ann. of Math. 93 (1971) 315–343.
Monsky, P., Washinitzer, G.: Formal cohomology. I. Ann. of Math. 88 (1968) 181–217.
Montgomery, H.L.: “Topics in multiplicative number theory”. Lect. Notes in Math., 227. Berlin, Heidelberg: Springer 1971.
Paterson, M. S., Stockmeyer, L. J.: On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J. Comput. 2 (1973) 60–67.
Poonen, B.: Computational aspects of curves of genus at least 2, Algorithmic number theory II, Lect. Notes in Comput. Sci., 1122, 283–306, ed. Cohen, H., Berlin: Springer, 1996.
Satoh, T.: The canonical lift of an ordinary elliptic curve over a finite field and its point counting. J. Ramanujan Math. Soc. 15 (2000) 247–270.
Satoh, T., Skjernaa, B., Taguchi, Y.: Fast Computation of Canonical Lifts of Elliptic curves and its Application to Point Counting, (2001) preprint.
Schönhage, A.: Asymptotically fast algorithms for the numerical multiplication and division of polynomials with complex coefficients, Computer algebra (Marseille, 1982), Lect. Notes in Comput. Sci., 144, 3–15, Berlin-New York: Springer, 1982.
Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7 (1971) 281–292.
Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp. 44 (1985) 483–494.
Schoof, R.: Counting points on elliptic curves over finite fields. J. Théor. Nombres Bordeaux 7 (1995) 219–254.
Silverman, J. H.: “The arithmetic of elliptic curves”. GTM, 106. Berlin-Heidelberg-New York: Springer 1985.
Skjernaa, B.: Satoh’s algorithm in characteristic 2, (2000) preprint, (to appear in Math. Comp.).
Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13 (1969) 354–356.
Vélu, J.: Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris. 273 (1971) 238–241.
Vercauteren, F., Preneel, B., Vandewalle, J.: A memory efficient version of Satoh’s algorithm, Advances in Cryptology-Eurocrypt 2001 (Innsbruck, Austria, May 2001), Lect. Notes in Comput. Sci., 2045, 1–13, ed. Pfitzmann, B., Berlin, Heidelberg: Springer Verlag, 2001.
Wan, D.: Computing zeta functions over finite fields, Finite fields: theory, applications, and algorithms (Waterloo, ON, 1997), Contemp. Math., 225, 131–141, Providence, RI: AMS, 1999.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Satoh, T. (2002). On p-adic Point Counting Algorithms for Elliptic Curves over Finite Fields. In: Fieker, C., Kohel, D.R. (eds) Algorithmic Number Theory. ANTS 2002. Lecture Notes in Computer Science, vol 2369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45455-1_5
Download citation
DOI: https://doi.org/10.1007/3-540-45455-1_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43863-2
Online ISBN: 978-3-540-45455-7
eBook Packages: Springer Book Archive