Skip to main content

New Bounds for Variable-Sized and Resource Augmented Online Bin Packing

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2380))

Included in the following conference series:

  • 2316 Accesses

Abstract

In the variable-sized online bin packing problem, one has to assign items to bins one by one. The bins are drawn from some fixed set of sizes, and the goal is to minimize the sum of the sizes of the bins used. We present new algorithms for this problem and show upper bounds for them which improve on the best previous upper bounds. We also show the first general lower bounds for this problem. The case where bins of two sizes, 1 and α ∈ (0,1), are used is studied in detail. This investigation leads us to the discovery of several interesting fractal-like curves. Our techniques are also applicable to the closely related resource augmented online bin packing problem, where we have also obtained the first general lower bounds.

Research supported by Israel Science Foundation (grant no. 250/01).

Research supported by the Louisiana Board of Regents Research Competitiveness Subprogram.

This work done while the author was at the CWI, The Netherlands. Research supported by the Netherlands Organization for Scientific Research (NWO), project number SION 612-30-002.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brown, D. J. A lower bound for on-line one-dimensional bin packing algorithms. Tech. Rep. R-864, Coordinated Sci. Lab., University of Illinois at Urbana-Champaign, 1979.

    Google Scholar 

  2. Chandra, B. Does randomization help in on-line bin packing? Information Processing Letters 43, 1 (Aug 1992), 15–19.

    Article  Google Scholar 

  3. Coffman, E. G., Garey, M. R., AND Johnson, D. S. Approximation algorithms for bin packing: A survey. In Approximation Algorithms for NP-hard Problems, D. Hochbaum, Ed. PWS Publishing Company, 1997, ch. 2.

    Google Scholar 

  4. Csirik, J. An on-line algorithm for variable-sized bin packing. Acta Informatica 26, 8 (1989), 697–709.

    Article  MathSciNet  Google Scholar 

  5. Csirik, J., AND Woeginger, G. On-line packing and covering problems. In On-Line Algorithms—The State of the Art, A. Fiat and G. Woeginger, Eds., Lecture Notes in Computer Science. Springer-Verlag, 1998, ch. 7.

    Google Scholar 

  6. Csirik, J., AND Woeginger, G. Resource augmentation for online bounded space bin packing. In Proceedings of the 27th International Colloquium on Automata, Languages and Programming (Jul 2000), pp. 296–304.

    Google Scholar 

  7. Epstein, L., Seiden, S. S., AND Van Stee, R. On the fractal beauty of bin-packing. Tech. Rep. SEN-R0104, CWI, Amsterdam, 2001.

    Google Scholar 

  8. Friesen, D. K., AND Langston, M. A. A storage-size selection problem. Information Processing Letters 18 (1984), 295–296.

    Article  MATH  MathSciNet  Google Scholar 

  9. Friesen, D. K., AND Langston, M. A. Variable sized bin packing. SIAM Journal on Computing 15 (1986), 222–230.

    Article  MATH  Google Scholar 

  10. Johnson, D. S.Near-optimal bin packing algorithms. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1973.

    Google Scholar 

  11. Johnson, D. S. Fast algorithms for bin packing. Journal Computer Systems Science 8 (1974), 272–314.

    MATH  Google Scholar 

  12. Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., AND Graham, R. L. Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing 3 (1974), 256–278.

    Article  MathSciNet  Google Scholar 

  13. Kinnersley, N., AND Langston, M. Online variable-sized bin packing. Discrete Applied Mathematics 22, 2 (Feb 1989), 143–148.

    Google Scholar 

  14. Lee, C., AND Lee, D. A simple on-line bin-packing algorithm. Journal of the ACM 32, 3 (Jul 1985), 562–572.

    Google Scholar 

  15. Liang, F. M. A lower bound for online bin packing. Information Processing Letters 10 (1980), 76–79.

    Article  MATH  MathSciNet  Google Scholar 

  16. Ramanan, P., Brown, D., Lee, C., AND Lee, D. On-line bin packing in linear time. Journal of Algorithms 10, 3 (Sep 1989), 305–326.

    Google Scholar 

  17. Richey, M. B. Improved bounds for harmonic-based bin packing algorithms. Discrete Applied Mathematics 34 (1991), 203–227.

    Article  MATH  MathSciNet  Google Scholar 

  18. Seiden, S. S. An optimal online algorithm for bounded space variable-sized bin packing. In Proceedings of the 27th International Colloquium on Automata, Languages and Programming (Jul 2000), pp. 283–295.

    Google Scholar 

  19. Seiden, S. S. On the online bin packing problem. In Proceedings of the 28th International Colloquium on Automata, Languages and Programming (Jul 2001), pp. 237–249.

    Google Scholar 

  20. Van vliet, A. An improved lower bound for online bin packing algorithms. Information Processing Letters 43, 5 (Oct 1992), 277–284.

    Google Scholar 

  21. Yao, A. C. C. New algorithms for bin packing. Journal of the ACM 27 (1980), 207–227.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Epstein, L., Seiden, S., van Stee, R. (2002). New Bounds for Variable-Sized and Resource Augmented Online Bin Packing. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-45465-9_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43864-9

  • Online ISBN: 978-3-540-45465-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics