Skip to main content

Why Computational Complexity Requires Stricter Martingales

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2380))

Included in the following conference series:

Abstract

The word “martingale” has related, but different, meanings in probability theory and theoretical computer science. In computational complexity and algorithmic information theory, a martingale is typically a function d on strings such that E(d(wb)w) = d(w) for all strings w, where the conditional expectation is computed over all possible values of the next symbol b. In modern probability theory a martingale is typically a sequence ξ012,... of random variables such that E(ξn+1ξ0,..., ξn) = ξn for all n.

This paper elucidates the relationship between these notions and proves that the latter notion is too weak for many purposes in computational complexity, because under this definition every computable martingale can be simulated by a polynomial-time computable martingale.

This research was supported in part by National Science Foundation Grant 9988483.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, 1992.

    Google Scholar 

  2. K. Ambos-Spies and E. Mayordomo. Resource-bounded measure and randomness. In A. Sorbi, editor, Complexity, Logic and Recursion Theory, Lecture Notes in Pure and Applied Mathematics, pages 1–47. Marcel Dekker, New York, N.Y., 1997.

    Google Scholar 

  3. J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I (second edition). Springer-Verlag, Berlin, 1995.

    Google Scholar 

  4. K. L. Chung. A Course in Probability Theory. Academic Press, third edition, 2001.

    Google Scholar 

  5. J. L. Doob. Regularity properties of certain families of chance variables. Transactions of the American Mathematical Society, 47:455–486, 1940.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. L. Doob. Stochastic Processes. Wiley, New York, N.Y., 1953.

    MATH  Google Scholar 

  7. R. Durrett. Essentials of Stochastic Processes. Springer, 1999.

    Google Scholar 

  8. J. I. Lathrop and J. H. Lutz. Recursive computational depth. Information and Computation, 153:139–172, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Lévy. Propriétés asymptotiques des sommes de variables indépendantes ou enchainées. Journal des mathématiques pures et appliquées. Series 9., 14(4):347–402, 1935.

    MATH  Google Scholar 

  10. P. Lévy. Théorie de l’Addition des Variables Aleatoires. Gauthier-Villars, 1937 (second edition 1954).

    Google Scholar 

  11. J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44:220–258, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. H. Lutz. The quantitative structure of exponential time. In L.A. Hemaspaan-dra and A.L. Selman, editors, Complexity Theory Retrospective II, pages 225–254. Springer-Verlag, 1997.

    Google Scholar 

  13. J. H. Lutz. Resource-bounded measure. In Proceedings of the 13th IEEE Conference on Computational Complexity, pages 236–248, New York, 1998. IEEE Computer Society Press.

    Google Scholar 

  14. P. Martin-Löf. The definition of random sequences. Information and Control, 9:602–619, 1966.

    Article  MathSciNet  Google Scholar 

  15. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

    Google Scholar 

  16. S. M. Ross. Stochastic Processes. Wiley, 1983.

    Google Scholar 

  17. C. P. Schnorr. Klassifikation der Zufallsgesetze nach Komplexität und Ordnung. Z. Wahrscheinlichkeitstheorie verw. Geb., 16:1–21, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. P. Schnorr. A unified approach to the definition of random sequences. Mathematical Systems Theory, 5:246–258, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. P. Schnorr. Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics, 218, 1971.

    Google Scholar 

  20. C. P. Schnorr. Process complexity and effective random tests. Journal of Computer and System Sciences, 7:376–388, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Ville. Etude Critique de la Notion de Collectif’. Gauthier-Villars, Paris, 1939.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hitchcock, J.M., Lutz, J.H. (2002). Why Computational Complexity Requires Stricter Martingales. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_47

Download citation

  • DOI: https://doi.org/10.1007/3-540-45465-9_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43864-9

  • Online ISBN: 978-3-540-45465-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics