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Abstract. We prove that the first-order theory of the one-step rewriting rela-
tion associated with a trace rewriting system is decidable and give a nonelemen-
tary lower bound for the complexity. The decidability extends known results on
semi-Thue systems but our proofs use new methods; these new methods yield
the decidability of local properties expressed in first-order logic augmented by
modulo-counting quantifiers. Using the main decidability result, we describe a
class of trace rewriting systems for which the confluence problem is decidable.
The complete proofs can be found in the Technical Report [14].

1 Introduction

Rewriting systems received a lot of attention in mathematics and theoretical computer
science and are still an active field of research. Historically, rewriting systems were in-
troduced to solve word problems in certain structures [28]. By the work of Markov [18]
and Post [24], this hope vanished as they showed that there exist fixed semi-Thue sys-
tems with an undecidable word problem. Despite this result, there are plenty of rewriting
systems with a decidable word problem, the most famous class being that of confluent
and terminating systems. By Newman’s Lemma, confluence can be decided for termi-
nating semi-Thue systems as well as for terminating term rewriting systems. In general,
both confluence and termination are undecidable properties of a semi-Thue system. A
large deal of research tries to identify sufficient conditions for confluence/termination
of rewriting systems (cf. [26]), or to describe classes of rewriting systems where con-
fluence/termination is decidable.

These two properties which are in the heart of research in this area are typical
second-order properties of the rewrite graph: its nodes are the structures that are rewrit-
ten (e.g., words in case of a semi-Thue system or terms in case of a term rewriting
system), and directed edges indicate that one such structure can be rewritten into the
other in one step. In order to define confluence and termination, one needs to quantify
over paths in this graph. Hence the monadic second-order theory of rewrite graphs is
in general undecidable. The situation changes for semi-Thue systems when one consid-
ers the first-order theory: the edges of the rewrite graph of a semi-Thue system can be
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described by two-tape automata that move their heads synchronously on both tapes.*
Using the well known closure properties of regular sets, the decidability of the first-
order theory of these graphs follows [5, 13]. This result also holds for rewrite graphs of
ground term rewriting systems [5], but not for term rewriting systems in general [29].
Another result in this direction is the decidability of the monadic second-order theory
of the rewrite graph of a prefix semi-Thue system [2] (a prefix semi-Thue system is a
semi-Thue system where only prefixes can be rewritten). In particular confluence and
termination are decidable for prefix semi-Thue systems.

This paper investigates the first-order theory of the rewrite graph of a trace rewriting
system. Cartier and Foata [1] investigated the combinatorics of free partially commuta-
tive monoids that became later known as trace monoids. Mazurkiewicz [20] introduced
them into computer science. They form a mathematically sound model for the concur-
rent behaviour of systems of high abstraction. Since trace monoids are a generalization
of free monoids, it was tempting to extend the investigation of free monoids to free
partially commutative monoids. This resulted, e.g., in the extensive consideration of
recognizable and rational trace languages (cf. [9] for a collection of surveys on this
field), trace equations [10, 19, 8], and trace rewriting systems [6, 7, 16, 17].

Our main result states that for any finite trace rewriting system, the first-order theory
of the associated rewrite graph is decidable. Because of the non-local effects of trace
rewriting,? the automata-theoretic techniques from Dauchet and Tison [5] and Jacque-
mard [13] are not applicable here and we had to search for other ideas. The first is
an application of Gaifman’s locality theorem: the validity of a first-order sentence in
a structure S depends on first-order properties of spheres around elements of S. Since
this theorem is effective, we were left with the question how to describe the set of traces
that are centers of an r-sphere satisfying a given first-order formula. Our second idea
is that the r-sphere around a trace can be described in the dependence graph of this
trace by a sentence of monadic second-order logic. Note that this logic does not speak
about the infinite rewrite graph, but about a single finite dependence graph. We show
that this is indeed effectively possible. Hence, by a result of Thomas [27], this implies
the recognizability of the set of traces that are centers of an r-sphere satisfying a given
first-order formula. Taking these two ideas together, we obtain that the first-order theory
of the graph of any trace rewriting system is decidable.

We actually show a more general result since we do not only consider trace rewriting
systems, but scattered rewriting systems. The idea is that of a parallel rewrite step where
the intermediate factors of a trace have to satisfy some recognizable constraints and can
be permuted as long as they are independent in the trace monoid.

As mentioned above, the first step in our decidability proof is an application of
Gaifman’s Theorem. To the knowledge of the authors, all known translations of a first-
order sentence into a Boolean combination of local sentences are not elementary, thus
our decision procedure is far from efficient. We also show that one cannot avoid this
nonelementary complexity. To this aim, we construct a trace rewrite graph whose first-
order theory is not elementary. Thus, our use of Gaifman’s translation does not lead to

! As opposed to rational graphs where the movement is asynchronous.
2 With @ and ¢ the only independent letters, one can, e.g., rewrite a™bc™ into ¢™ba™ in just two
steps using the rules abc — ac and ca — cba.



an unreasonable inefficiency. We actually show a slightly stronger result, namely that
the set of valid local sentences for a fixed radius is not elementary. In other words,
the complexity of the decision question is already present when restricting to local
sentences. This nonelementary lower bound is shown for a nontrivial independence
alphabet and the proof does not carry over to semi-Thue systems. We show a lower
bound of doubly exponential nondeterministic time for this problem. Again this lower
bound holds for local sentences for a fixed radius.

In the last section, we return to the confluence problem for trace rewriting systems.
For terminating rewriting systems, confluence and local confluence are equivalent. The
problem with trace rewriting systems is that there can be infinitely many critical pairs
which makes it impossible to check all of them in turn [6, 7]. Even worse, by [22], it
is undecidable whether a length-reducing trace rewriting system is confluent. We de-
scribe classes of terminating trace rewriting systems for which confluence is decidable.
The classes of trace rewriting systems we consider in this last section ensure that local
confluence is effectively expressible by a sentence of first-order logic (which is not the
case in general). This then allows to apply our main result on the decidability of these
first-order properties and therefore the decidability of confluence for these classes when
restricted to terminating systems.

2 Rewriting in trace monoids

2.1 Trace monoids and recognizabletrace languages

In the following we introduce some notions from trace theory, see [9] for more details.
An independence relation on an alphabet X' is an irreflexive and symmetric relation
I C ¥ x X, the complementary relation D = (X x X)\I is called a dependence
relation. The pair (X, I) (resp. (X, D)) is called an independence alphabet (resp. a
dependence alphabet). A dependence graph or trace is a triple (V, E, A) where (V, E)
is a directed acyclic and finite graph (possibly empty) and A : V' — X' is a labeling
function such that, for all p, ¢ € V with p # ¢, we have

(AM(p),A(q)) € Difand only if (p,q) € E or (¢,p) € E.

We will identify traces that are isomorphic as labeled graphs. The set of all (isomor-
phism classes of) traces is denoted by Ml = M (X, I). For atrace t = (V, E, \), let
alph(t) = A(V). The independence relation I can be lifted to M by setting (u,v) € T
if alph(u) x alph(v) C I. On the set M, one defines a binary operation o by

(‘/IJED)‘I) o (%7E27’\2) = (‘/IU‘/LEI UEU E27)‘1 ) /\2)

where E = {(p1,p2) € Vi x Vo | (A(p1), M(p2)) € D}. Then (M, o) becomes a
monoid, its neutral element is the empty trace 1. If I = () then M is isomorphic to the
free monoid X*. On the other extreme if D = Idx, then M is isomorphic to the free
commutative monoid NI¥I. We will identify the letter a € X with the singleton trace
whose node is labeled by a. In this sense, a word w = ajas ...a, € X* defines the
trace [w]r = aj o az o - - - 0 a,. We write u = v for two words u and v if [u];r = [v]r.



This relation is the congruence on the free monoid X* generated by all pairs ab =5 ba
for (a, b) € I. In the following for u,v € M we will also write uwv instead of v o v.

Lett = (V, E, \) be atrace. Then the transitive reflexive closure E* of E is a partial
order. LetU C V suchthat, for p1, ps € U and g € V with (p1, q), (¢, p2) € E* itholds
g € U (i.e, U is convex w.r.t. E*). Then u = t[y € M is a trace and, furthermore,
there exist t1,t2 € M with ¢t = tut,. Vice versa if ¢ can be factorized as t = tquts
then there exists a convex U C V such that ¢[y = u.

Aset L C M is called recognizable if there exists a morphism A : M — @ from
(M, o) into a finite monoid @ and a subset ' C @ such that L = h~=1(F). The set of
all recognizable subsets of M is denoted by REC(M). It is well-known that REC(M)
is effectively closed under Boolean operations and concatenation of languages.® Fur-
thermore emptiness and finiteness are decidable for recognizable trace languages, and
if L € REC(M) is finite then its elements can be calculated effectively.

2.2 Scattered tracerewriting

Let us fix a countable infinite set {2 of (first-order) variables ranging over M for the rest
of this paper. In order to make notations more succinct, we associate with every first-
order variable z € (2 a recognizable trace language L(z). We assume that for every
L € REC(M) there is a countably infinite supply of variables z € 2 with L(z) = L.
The mapping z — L(z) will be fixed for the rest of this paper. The intuition of this
mapping is that the variable z € (2 will be restricted to its associated set L(z). On the
set £2 we define an independence relation J by

J={(z,y) |Vt € L(z)Vu € L(y) : (t,u) € I} \ ldg.

Let z4,...,z,, be pairwise different variables from (2. A pattern S over M and the
variables zy, . .., T, IS a SEQUENCE T (1) t1 Tr(2) ta * " Tr(m) WhErety, ...t 1 €M
and = is a permutation of {1,2,...,m}. We define type(S) = Zr1)Tr(2)*** Tr(m)-
A pattern S over the variables z1, ..., z,, is also denoted by S(z1,...,%m,). Note
that in a pattern a variable occurs precisely once, but the variables may occur in an
arbitrary order. If the variable x; evaluates to u; € M, 1 < i < m, then the trace
S(u1,...,u,) € M isdefined in the obvious way. A scattered rewrite rule over M and
the variables x1, ...,z isapair (S(z1,...,Zm), T (x1,...,2,)) Of patterns over M
such that type(S) = type(T). The set of all scattered rewrite rules over M is denoted
by S. A scattered rewriting system over M is a finite subset of S. For a scattered rewrite
rule p = (S(z1,-..,2m), T(z1,.-.,2m)) and s,t € M we write s —, ¢ if there exist
tracesu; € L(x;) suchthat s = S(uy,...,uy)andt = T(uy, ..., u,,). For ascattered
rewriting system R we write s — t if s =, ¢ for some p € R.

An important special case of scattered rewriting systems are trace rewriting systems
[6,7], i.e., scattered rewriting systems whose rules are all of the form (zfy, zry) for
z,y € 2,0,7 € M suchthat L(z) = L(y) = M.. If I = 0, i.e,, M ~ X*, then a trace
rewriting system over M is also called a semi-Thue system over X*. On the other hand
if I = (X x D)\ldg, i.e., M ~ NI¥| then a trace rewriting system over M is also

3 In these effectiveness statements, a recognizable language is given as a triple (Q, F, h).



called a vector replacement system over N*I. A rule (xfy,zry) of a trace rewriting
system will be briefly denoted by (¢, ).
In this paper we will be concerned with the first-order theory of the structure

M = (M, (L)perecm): (—p)pes)

and its reducts M, = (M, (L) Lerec (M), (=) per ), Where R is a scattered rewriting
system. Each recognizable language L € REC(M) is put into M as a unary predicate.
Furthermore, M contains all binary relations -, C M x M for p € S, while M,
contains only those relations —, for p € R.

Formally, trace rewriting systems are more general than semi-Thue and vector re-
placement systems since they work modulo a partial commutation. Even more, there
are trace rewriting systems R such that the graph (M, —% ) is not isomorphic to the
graph (X*, =) for any semi-Thue system S. To see this let us introduce some notions
concerning confluence. We say that the trace rewriting system R is confluent (resp. lo-
cally confluent) if for all ¢,¢;,t, € M witht S5 ¢, and t S5 to (resp. t =g t
and t —x to) there exists u € M with ¢t; - u and t; —% w. These two notions
are standard. The following notion seems to be new: We say that R is a-confluent,
where o € N, if forall ¢,¢1,t5 € M witht — t; and ¢ —x t5 there exists u € M
with t; —%% uand t» —5* u (where t; =< u denotes that u can be obtained
from ¢; in at most « steps). Using critical pairs one can show that any locally conflu-
ent semi-Thue system is a-confluent for some o € N. On contrast, the trace rewriting
system {(ab,1), (ba, 1), (c,1)} over the trace monoid M ({a, b, c}, {(a,c), (¢,a)}) is
locally confluent [17] but not a-confluent (consider ¢™b < bac™b = bc™ab — bc™ for
n> Q).

2.3 Themainresult

The main result of this paper states that the first-order theory of any structure M is de-
cidable. Since our decision procedure is uniform in the underlying alphabet, we obtain

Theorem 2.1. There exists an algorithm that, on input of an independence alphabet
(X,I) and a first-order sentence ¢ over the signature of the structure M, decides
whether M = o.

Note that M |= ¢ if and only if M5 = ¢ where R C S is finite and contains the set of
rewrite rules mentioned in . Thus, in order to prove Theorem 2.1, it suffices to prove
the decidability of the first-order theory of M4, for any scattered rewriting system R.

An immediate corollary of Theorem 2.1 is that the rewrite graph of a trace rewrit-
ing system has a decidable first-order theory. This generalizes the corresponding result
for semi-Thue systems in [5, 13], furthermore this generalization is a strict one by the
observation at the end of the previous section. The basic fact used in [5, 13] is that for
a semi-Thue system R the relation — is a synchronized rational transduction [11].
While these methods can be generalized to work for the case that M is a direct prod-
uct of free monoids, there seems to be no way to generalize them to arbitrary trace
monoids. Hence in our proof of Theorem 2.1 we will follow a completely different and
new strategy.



Let us close this section with some remarks on the limitations of our results. First,
if one omits the restriction type(S) =, type(T') for scattered rewrite rules (S, T'), the
theory of M becomes undecidable [14, Thm. 3.6]. A prefix rewriting system over M is
a scattered rewriting system R where all rules have the form (zfy, zry) with L(z) =
{1} and L(y) = M (we abbreviate this rule by (¢, r)). Based on results from [4], Caucal
has shown in [2] that for a prefix rewriting system R over a free monoid X* the monadic
second-order theory of the graph (X*, —) is decidable (this does not hold for semi-
Thue systems). In contrast to this, let R be the prefix rewriting system {(1, a), (1,b)}
over the free commutative monoid M ({a, b}, {(a,b), (b,a)}). The graph (M, —»r) is
a two-dimensional grid which has an undecidable monadic second-order theory. Hence,
in general, the monadic second-order theory of the relation — for a prefix rewriting
system R is undecidable.

3 Decidability of scattered rewriting

In this section we will prove Theorem 2.1. It is important to note that all statements are
effective although we do not state this fact explicitly in order to smoothen the formula-
tions. Let R be a fixed scattered rewriting system over the trace monoid M.

3.1 Reduction tolocal properties

The main tool in this section is Gaifman’s locality theorem for first-order logic [12].
For two traces s,t € M, let dr(s,t) denote the length of a shortest undirected path
from s to ¢ in the graph (M, —»%). For r > 0 and ¢ € M, the r-sphere around ¢
is S(r,t) = {s € M | dr(s,t) < r}. The r-sphere around ¢ is definable in M,
i.e., there exists a first-order formula with two free variables expressing dz(z,y) <
r. Now let ¢ be a first-order formula in the signature of M. Then the first-order
formula ¢5(™2) results from ¢ by relativizing all quantifiers to S(r, z). It can be defined
inductively, in particular (3y ¢)°™*) = Iy{dr (z,y) <r A ¢S}, Now Gaifman’s
theorem applied to the structure M5, states the following:

Theorem 3.1. For a given first-order sentence ¢ over the signature of M, one can
effectively compute a natural number » > 1 and a Boolean combination ¢ of sentences
of the form

Azq - -- Az, /\ dr (i, ;) > 2r A /\ S (g,)
1<i<j<m 1<i<m

where 4 is a first-order sentence over the signature of M, such that M = ¢ if and
only if Mz [= ¢.

In order to use Gaifman’s locality theorem for decidability purposes, we will need a
“useful” description of the set of all traces ¢t € M with M, = @52 (t). We will
show that this set is recognizable and that it is indeed a “useful” description.



3.2 Reduction to 1-spheres

The aim of this section is to show that by enlarging the set R it suffices to restrict to
the case » = 1 in Theorem 3.1. The basic idea is the following: let s, ¢,v be traces
and (S, T), (U, V) be scattered rewrite rules such that s — (5 7y t —(,v) v. Then the
trace ¢ can be factorized in two ways, one according to the pattern 7" and one according
to the pattern U. Using Levi’s Lemma for traces (see e.g. [9]), one can then refine the
scattered rewrite rules (S, T') and (U, V') to (S',T") and (U’, V') such that s — (s, 1)
t —r,vr) v, and the two factorizations of ¢ according to 7" and to U" are actually
the same. Then also (S’, V') is a scattered rewrite rule and s — (g vy v. Any pair of
rewrite rules (S,T) and (U, V) from R gives rise to a finite set of refinements. Using
this process of refinement inductively, one obtains

Lemma 3.2. For r > 0, there exists a scattered rewriting system R.. over M such that
R CR,andforall s,t € M itholdsdr(s,t) < rifandonlyif s -5, t.

It should be noted that if R is a trace rewriting system then the system R, is in gen-
eral not a trace rewriting systems. This was one of the reasons for generalizing trace
rewriting systems to scattered rewriting systems.

3.3 Internalizing the 1-sphere

As a major tool in the further consideration we will use monadic second-order logic
(MSO logic) over dependence graphs. Formulae in this logic are interpreted over de-
pendence graphs (V, E, X). There exist first-order variables z, y, z, . . . ranging over el-
ements of V' and second-order variables X, Y, Z, . .. ranging over subsets of V. Atomic
formulae are of the form Q,(z), z < y, and z € X where = and y are first-order vari-
ables, X is a second-order variable, and @, is a unary relation symbol for every a € X.
The interpretation of Q,(z) is A(z) = a whereas x < y is interpreted as (z,y) € E*.
From atomic formulae, MSO-formulae are constructed using Boolean connectives and
quantification over first-order and second-order variables.

Note that this logic is not an extension of first-order logic as considered so far in this
paper. The reason is simply that it speaks on finite dependence graphs (V, E, X) while
the first-order logic we are interested in speaks on the infinite structure M. Since the el-
ements of this latter structure are traces, we will use the following terminology: formu-
lae of the first-order logic considered so far are called external first-order formulae and
formulae of the MSO-logic on dependence graphs are called internal MSO-formulae.
Similarly, we will speak of external first-order variables that range over traces and inter-
nal second-order variables (resp. internal first-order variables) that range over subsets
(resp. elements) of a dependence graph (V, E, \).

Theorem 3.3. Let p(x) be an external first-order formula. There exists an internal
MSO-sentence int(¢) such that we have for all dependence graphs s = (V, E, )

s = int(p) if and only if My |= 509 (s).



Proof (sketch). The underlying idea is as follows: suppose s,t € M are traces such
that s — (g 1) t for some scattered rewrite rule (S, T'). Then the dependence graphs
s = (Vs, Eg, As) and t = (V4, Ey, M) coincide on large parts. In order to make this
more precise, let S = z1 81 T2... 8 1Tm ANA T = Tr(1)t1 Tr(2) - - b1 Tr(m)
where 7 is a permutation of {1,2,...m}. There are traces uy,us, . .., u, such that
S =1U10810U0...85,_10Uyandt = Ur(1) 01 OUg(2) O - - Ln—1 O Us(im)- Hence the
trace ¢ can be represented by a tuple wq, us, . . . u,, of factors of s (i.e., convex subsets
of V') and the scattered rewrite rule (S, T'). It is therefore possible to replace the external
quantification over neighbors of s in M, by a finite disjunction over all rules from
R, and an internal quantification over m-tuples of factors of s. For i = 1,2, let ¢;
be a neighbor of s represented by the rule (S;,7;) and the tuple (u?,ud, ...ut,). One
than has to express internally that ¢; = ¢ as well as ¢, —, t2. This is achieved using
a thorough analysis of the interplay of the scattered rewrite rules, the independence
relation I, and the recognizable constraints L(z) on the external first order variables
x € £2. Only here the restriction that type(S) =, type(T) for (S,T) € S becomes
important. The proof can be found in [14]. O

Now we can prove Theorem 2.1, our main result:

Proof sketch of Theorem 2.1. By Gaifman’s Theorem and Lemma 3.2, it suffices to
check whether a sentence of the form

1<i<j<m 1<i<m

holds in My, . By Theorem 3.3, My = ¢5(12)(¢) if and only if ¢ |= int(). Hence
theset L = {t € M | My = @512 (1)} is recognizable by [27]. Thus we can check
whether L is infinite. If this is the case than L contains traces of arbitrary size; there are
in particular infinitely many traces ¢; € L, i € N, such that dg, (t;,t;) > 2 fori < j.
Hence (1) is true. On the other hand if L is finite, then we can enumerate all elements
of L and calculate their 1-spheres with respect to R.. In this way we can check whether
there are at least m traces ¢1,...,t, € L such that dg, (¢;,t;) > 2 for i < j. Hence
the decidability follows. O

First-order logic can be extended by modulo counting quantifiers [25]; the resulting
logic is called FO+MOD. The only difference between FO+MOD and FO is that we
now have a second type of quantifiers: if ¢ is a formula of FO+MOD, then 3?9z is
a formula as well for p,q € Nand p < ¢. Then M |= 3P0 g if the number of traces
t € M with M = ¢(t) is finite and congruent p modulo q.

Since there is no locality theorem known for this logic,* our decidability proof for
the first-order theory of M does not work for this more expressive logic; but the second
step of our proof, i.e., the recognizability of the set of traces satisfying some local
formula in FO extends to the logic FO+MOD. Thus, we obtain the decidability of local
properties expressed in the logic FO+MOD. It seems that this result is new even for

4 Libkin [15] and Nurmonen [23] proved locality theorems for counting logics including modulo
counting, but not in the form of Theorem 3.1. We could not make them work in our situation.



semi-Thue systems and, as far as we see, cannot be shown using the automata theoretic
methods from [5, 13].

Theorem 3.4. There is an algorithm that, on input of an independence alphabet (X, I),
a natural number » > 0, and a sentence ¢ of FO+MOD in the language of the model
M, decides whether there exists t € M with M = (") (¢).

4 Complexity issues

We prove a nonelementary lower bound for the first-order theory of M by reducing
the first-order theory of finite labeled linear orders. In order to formulate this, we take
the MSO-logic over dependence graphs from Section 3.3 but forbid the use of second-
order variables. The resulting formulae are called first-order formulae over dependence
graphs. For the further consideration we will use this logic only for dependence graphs
t where ¢ is in fact a word ¢t € X™*. In this case the relation symbol < is interpreted by
the usual order on the set {1, ..., ||}, and we speak of first-order formulae over words.
Throughout this section, let I" = {«, 8} be an alphabet with two elements. The first-
order theory of I'™* is the set of all first-order sentences over words ¢ such that w = ¢
forall w € I'*. It is known that the first-order theory of I'* is not elementary decid-
able. This lower bound was announced in [21] where it is attributed to Stockmeyer.
Stockmeyer’s proof can only be found in his thesis and the same holds for the sharpen-
ing by Flhrer while Robertson’s independent proof appeared as an extended abstract,
only. The only proof that has been published seems to be [3, Example 8.1].

Let &y = I' x {0,1,2,3}. On this set, we define a dependence relation D; as
follows: ((a,),(b,j)) € Dy ifandonlyifi = jori,j < 2or(a = band {i,j} C
{1,2,3}). The complementary relation is denoted by I;. Next, we will consider the
(preliminary) trace rewriting system Ry over M (X, I;) defined by

R1 ={(a,0) = (a,3)(a,1)(a,3), (a,1) = (a,2) |a € I'}.

We first reduce the first-order theory of I'* to the first-order theory of the structure
(M (X1, 6), 2R, (Ft)ier) Where F C M(Xy, 1) is finiteand F; = M ot o M is
the set of all traces that contain the factor ¢:

Lemma4.1. The first-order theory of I'* can be reduced in polynomial time to the
first-order theory of (M (X1, 1), &R, , (Ft)ter) for some finite set ¥ C M (X1, ).

Proof (sketch). Atrace in M contains only letters from I" x {0} if and only if it does not
contain any factor of the form (a,4) for 1 < i < 3. Hence (with X; x {1,2,3} C F)
the set of words over I" x {0} (which will be identified with the words over I") can
be defined in (M (X,11), =R,, (Fi)icr). The successors of such a word w are in
one-to-one correspondence with the positions in w, hence the internal quantification
over positions in w gets replaced by external quantifications over neighbors of w. The
label of a position can be recovered using the predicates F,,1) for a € I". The order
between positions requires the use of predicates F; with ¢ = (a,2)(a,3)(b,3) and
t = (a,3)(b,3)(b,1). O



In order to get rid of the predicates F; in the lemma above, one extends the alphabet Xy
and the trace rewriting system R4 in such a way that loops of characteristic lengths are
attached to traces from F;. This allows to reduce the first-order theory of I'* to the set of
valid local sentences of the resulting structure (M (X5, I5), =, ). Hence one obtains

Theorem 4.2. There exists an independence alphabet (X2, I5) and a trace rewriting
system R, over M (X5, I1) such that the first-order theory of (M[(Xs, I5), = %,) is not
elementary decidable.

For semi-Thue systems, we can only show a weaker lower bound:

Theorem 4.3. There exists an alphabet X5 and a semi-Thue system R 3 over X3 such
that any decision procedure for the first-order theory of (X, —%,) requires at least
doubly exponential nondeterministic time.

5 Applications to the confluence problem

In this section we present applications of Theorem 2.1 to the confluence problem for
trace rewriting systems. For terminating semi-Thue systems, i.e., systems without infi-
nite derivations, confluence is decidable by Newman’s Lemma and the use of critical
pairs. For trace rewriting systems, the situation becomes more complicated since even
finite length-reducing trace rewriting systems can have infinitely many critical pairs [6,
7]. Generalizing a result from [22], it is shown in [17] that confluence of length-reducing
trace rewriting systems is decidable if and only if I = @ or I = (X' x X)\ldy, i.e.,
undecidable in most cases. In this section we describe specific classes of trace rewriting
systems with a decidable confluence problem, see [7, 17] for related results.

First we have to introduce some notation. For ¢ € M define D(¢) = {a € ¥ |
(a,t) & I}. Forasubalphabet I C X and a trace rewriting system R we define the
trace rewriting system 7 (R) by 7 (R) = {(zwr(£),7r(r)) | (¢,r) € R}, where
mr(t) denotes the projection of the trace ¢ to the alphabet I". A clique covering of a
dependence alphabet (X, D) is a sequence (I',...,I3,) with I; C X such that ¥ =
Ui, Iz and D = {J;_, I; x I;. Finally a trace rewriting system R is terminating on a
trace ¢ if there does not start an infinite —x path in ¢.

Theorem 5.1. Confluence is decidable for the class of terminating trace rewriting sys-
tems R over M(X, I) satisfying the following conditions:

(1) Forall (¢,7) € R and all a € X with (a,£) € I itholds ar = ra.

(2) For all po,p1,q0,q1, € M\{1}, ro,m1 € M with (pogo,70), (P1¢1,71) € R and
(po,p1), (g0, q1) € I there exist sq, s1,t0,t1 € M such that r; = s;t;, D(s;) C
D(p;), and D(¢;) C D(g;) fori =0, 1.

(3) For all po,p1,490,q1,70,71 € M, s € M\{1} with (posqo,r0), (P15g1,71) € R
and (po, 1), (g0, q1) € I, the trace rewriting system 7 (R) is terminating on the
traces mr(pirog1) and mr (porigo), where I' = D(posg1) N D(p15¢o)-

Proof (sketch). One shows that in this case a € N can be computed effectively such
that confluence and a-confluence (see Section 2.3) are equivalent. Since a-confluence
is first-order expressible, it is decidable by Theorem 2.1. O



From this very technical decidability criterion, one can infer [16, Thm. 2] and the fol-
lowing new special case:

Corollary 5.2. Confluence is decidable for the class of trace rewriting systems R over
M(X, I) such that

(1) forall (¢,7) € R, the graph (alph(¥), D) is connected, and
(2) there exists a clique covering (I7,...,I5) of (X, (X x X)\I) such that for all
i € {1,...,n} the semi-Thue system 7;(R) is terminating.

6 Open questions

In Section 4, we gave a lower bound for the complexity of the first-order theory of the
one-step rewriting by a semi-Thue system. There is a huge gap between this doubly
exponential lower and the nonelementary upper bound that follows immediately from
the proofs in [5, 13].

Although our decidability result is very similar to corresponding results in [5,13],
our technique is new. It could provide a means to identify term rewriting systems whose
rewrite graph has a decidable first-order theory. Several classes of term rewriting sys-
tems with this property have been identified, like for instance ground term rewriting
systems [5], but in general the problem is undecidable [29].

Semi-Thue systems can be seen as term rewriting systems modulo associativity (it
is a very simple case since there are no further symbols). Similarly, trace rewriting is
term rewriting modulo associativity and partial commutativity. Is it possible to use the
technique developed in this paper to handle other “term rewriting modulo ...” theories?
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