Skip to main content

On the Theory of One-Step Rewriting in Trace Monoids

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2380))

Included in the following conference series:

Abstract

We prove that the first-order theory of the one-step rewriting relation associated with a trace rewriting system is decidable and give a nonelementary lower bound for the complexity. The decidability extends known results on semi-Thue systems but our proofs use new methods; these new methods yield the decidability of local properties expressed in first-order logic augmented by modulo-counting quantifiers. Using the main decidability result, we describe a class of trace rewriting systems for which the confluence problem is decidable. The complete proofs can be found in the Technical Report [14].

This work was partly done while the second author was on leave at IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France and supported by the INRIA cooperative research action FISC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Cartier and D. Foata. Problèmes combinatoires de commutation et réarrangements. Lecture Notes in Mathematics vol. 85. Springer, Berlin-Heidelberg-New York, 1969.

    MATH  Google Scholar 

  2. D. Caucal. On the regular structure of prefix rewriting. Theoretical Computer Science, 106:61–86, 1992.

    Article  MathSciNet  Google Scholar 

  3. K. Compton and C. Henson. A uniform method forproving lower bounds on the computational complexity of logical theories. Annals of Pure and Applied Logic, 48:1–79, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Courcelle. The monadic second-order logic of graphs, II: Infinite graphs of bounded width. Mathematical Systems Theory, 21:187–221, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Science (LICS’ 90), pages 242–256. IEEE Computer Society Press, 1990.

    Google Scholar 

  6. V. Diekert. On the Knuth-Bendix completion for concurrent processes. In Th. Ottmann, editor, Proceedings of the14th International Colloquium on Automata, Languages and Programming (ICALP 87), Karlsruhe (Germany), number 267 in Lecture Notes in Computer Science, pages 42–53. Springer, 1987.

    Google Scholar 

  7. V. Diekert. Combinatorics on Traces. Number 454 in Lecture Notes in Computer Science. Springer, 1990.

    MATH  Google Scholar 

  8. V. Diekert, Y. Matiyasevich, and A. Muscholl. Solving word equations modulo partial commutations. Theoretical Computer Science, 224(1–2):215–235, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore, 1995.

    Google Scholar 

  10. C. Duboc. On some equations in free partially commutative monoids. Theoretical Computer Science, 46:159–174, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Frougny and J. Sakarovitch. Synchronized rational relations of finite and infinite words. Theoretical Computer Science, 108(1):45–82, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Gaifman. On local and nonlocal properties. In J. Stern, editor, Logic Colloquium’ 81, pages 105–135, 1982, North Holland.

    Google Scholar 

  13. F. Jacquemard. Automates d’arbres et Réécriture de termes. PhD thesis, Université de Paris-Sud, 1996.

    Google Scholar 

  14. D. Kuske and M. Lohrey. On the theory of one-step rewriting in trace monoids. Technical Report 2002-01, Department of Mathematics and Computer Science, University of Leicester. Available at http://www.mcs.le.ac.uk/~dkuske/pub-rest.html#UNP9.

  15. L. Libkin. Logics capturing local properties. ACM Transactions on Computational Logic. To appear.

    Google Scholar 

  16. M. Lohrey. On the confluence of trace rewriting systems. In V. Arvind and R. Ramanujam, editors, Proceedings of the 18th Conference on Foundations of Software Technology and Theoretical Computer Science, (FSTTCS’98), Chennai (India), number 1530 in Lecture Notes in Computer Science, pages 319–330. Springer, 1998.

    Google Scholar 

  17. M. Lohrey. Confluence problems for trace rewriting systems. Information and Computation. 170:1–25, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Markov. On the impossibility of certain algorithms in the theory of associative systems. Doklady Akademii Nauk SSSR, 55, 58:587–590, 353–356, 1947.

    Google Scholar 

  19. Y. Matiyasevich. Some decision problems for traces. In S. Adian and A. Nerode, editors, Proceedings of the 4th International Symposium on Logical Foundations of Computer Science (LFCS’97), Yaroslavl (Russia), number 1234 in Lecture Notes in Computer Science, pages 248–257. Springer, 1997.

    Google Scholar 

  20. A. Mazurkiewicz. Concurrent program schemes and their interpretation. Technical report, DAIMI Report PB-78, Aarhus University, 1977.

    Google Scholar 

  21. A. Meyer. Weak monadic second order theory of one successor is not elementary recursive. In Proc. Logic Colloquium, Lecture Notes in Mathematics vol. 453, pages 132–154. Springer, 1975.

    Google Scholar 

  22. P. Narendran and F. Otto. Preperfectness is undecidable for Thue systems containing only length-reducing rules and a single commutation rule. Information Processing Letters, 29:125–130, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Nurmonen. Counting modulo quantifiers on finite structures. Information and Computation, 160:62–87, 2000. LICS 1996, Part I (New Brunswick, NJ).

    Article  MathSciNet  Google Scholar 

  24. E. Post. Recursive unsolvability of aproblemofThue. Journal of Symbolic Logic, 12(1):1–11, 1947.

    Article  MathSciNet  Google Scholar 

  25. H. Straubing, D. Thérien, and W. Thomas. Regular languages defined with generalized quantifiers. Information and Computation, 118:289–301, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  26. Terese. Term Rewriting Systems. To appear with Cambridge University Press, 2001.

    Google Scholar 

  27. W. Thomas. On logical definability of trace languages. In V. Diekert, editor, Proceedings of a workshop of the ESPRIT Basic Research Action No 3166: Algebraic and Syntactic Methods in Computer Science (ASMICS), Kochel am See (Germany), Report TUM-I9002, Technical University of Munich, pages 172–182, 1990.

    Google Scholar 

  28. A. Thue. Probleme über die Veränderungen von Zeichenreihen nach gegebenen Regeln. Skr. Vid. Kristiania, I Math. Natuv. Klasse, No. 10, 34 S., 1914.

    Google Scholar 

  29. R. Treinen. The first-order theory of linear one-step rewriting is undecidable. Theoretical Computer Science, 208(1–2): 149–177, 1998.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuske, D., Lohrey, M. (2002). On the Theory of One-Step Rewriting in Trace Monoids. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_64

Download citation

  • DOI: https://doi.org/10.1007/3-540-45465-9_64

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43864-9

  • Online ISBN: 978-3-540-45465-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics