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Abstract. In this paper we introduce the concept of statistical deformation mod-
els (SDM) which allow the construction of average models of the anatomy and
their variability. SDMs are built by performing a statistical analysis of the defor-
mations required to map anatomical features in one subject into the corresponding
features in another subject. The concept of SDMs is similar to active shape mod-
els (ASM) which capture statistical information about shapes across a population
but offers several new advantages over ASMs: Firstly, SDMs can be constructed
directly from images such as MR or CT without the need for segmentation which
is usually a prerequisite for the construction of active shape models. Instead a
non-rigid registration algorithm is used to compute the deformations required
to establish correspondences between the reference subject and the subjects in
the population class under investigation. Secondly, SDMs allow the construction
of an atlas of the average anatomy as well as its variability across a population
of subjects. Finally, SDMs take the 3D nature of the underlying anatomy into
account by analysing dense 3D deformation fields rather than only the 2D sur-
face shape of anatomical structures. We demonstrate the applicability of this new
framework to MR images of the brain and show results for the construction of
anatomical models from 25 different subjects.

1 Introduction

The significant inter-subject variability of anatomy and function makes the interpreta-
tion of medical images a very challenging task. Atlas-based approaches address this
problem by defining a common reference space. Mapping data sets into this common
reference space not only accounts for anatomical and functional variations of individ-
ual subjects, it also offers a powerful framework to facilitate comparison of anatomy
and function over time, between subjects, between groups of subjects and across sites.
Consequently, a number of different elastic [1]] and fluid [[2/3]] warping techniques have
been developed for this purpose. A recent review of different non-rigid registration
techniques can be found in [4]. Traditional medical atlases contain information about
anatomy and function from a single individual focusing primarily on the human brain
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[S]. Even though the individuals selected for these atlases may be considered normal,
they may represent an extremum of a normal distribution. To address this problem, re-
searchers have developed various probabilistic and statistical approaches which include
information from a group of subjects making them more representative of the popula-
tion under investigation [6/7.8].

Statistical models of shape variability [9] or Active Shape Models (ASM) have been
successfully applied to perform various image analysis tasks in 2D and 3D images.
In building those statistical models, a set of segmentations of the shape of interest is
required as well as a set of landmarks that can be unambiguously defined in each sample
shape. An extension of ASMs are the so-called Active Appearance Models (AAM) [10]
which have been used for atlas matching. This model incorporates not only information
about the spatial distribution of landmarks but also about the intensity distribution at the
landmarks. In a different approach Wang et al. [[L1] suggested to use statistical shape
information as priors for a non-rigid registration. A fundamental problem when building
these models is the fact that it requires the determination of point correspondences
between the different shapes. The manual identification of such correspondences is a
time consuming and tedious task. This is particularly true in 3D where the amount of
landmarks required to describe the shape accurately increases dramatically compared
to 2D applications.

In a recent paper [12] we have described an automated way of establishing correspon-
dences between different shapes via a non-rigid registration algorithm [13]]. In this paper
we present a natural extension of our previous approach in which we perform statistical
analysis directly on the deformation fields required to match different anatomies. We
use the term statistical deformation models (SDM) to describe this framework since it
allows the construction of average models of the anatomy and their statistical variability
across a population of subjects.

2 Method

Traditionally, landmarks are anatomically characteristic points which can be uniquely
identified across a set of individuals. The goal of inter-subject registration is to find the
optimal transformation T; : x +— x’ which maps any point x in the anatomy of the
reference subject S, into its corresponding point x’ in the anatomy of any other sub-
ject S; in the population class. Assuming a one-to-one correspondence of anatomical
structures across subjects, the registration of images between different subjects yields a
dense set of so-called pseudo-landmarks. In our new framework we perform a principal
component analysis (PCA) on these pseudo-landmarks which is equivalent to perform-
ing a PCA on the deformation fields required to map the anatomy of one subject into
the anatomy of another subject. In the following we will describe our new framework
in more detail.

2.1 Non-rigid Registration

In practice, the anatomical variability between subjects cannot be sufficiently explained
by an affine transformation which only accounts for differences due to position, orien-
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tation and size of the anatomy. To capture the anatomical variability, it will be necessary
to employ non-rigid transformations such as elastic or fluid transformations. We are us-
ing a non-rigid registration algorithm which has been previously applied successfully to
a number of different registration tasks [13/14]]. This algorithm uses a combined trans-
formation T which consists of a global transformation and a local transformation:

T(X) = Tglobal (X) + Tioca (X) (1)

The global transformation describes the overall differences between the two subjects
and is represented by an affine transformation. The local transformation describes any
local deformation required to match the anatomies of the subjects. We have chosen a
free-form deformation (FFD) model based on B-splines which is a powerful tool for
modelling 3D deformable objects. The basic idea of FFDs is to deform an object by
manipulating an underlying mesh of control points. The resulting deformation controls
the shape of the 3D object and can be written as the 3D tensor product of the familiar
1D cubic B-splines,

3 3 3
Tlocal(x) - Z Z Z Bl(u)Bm(U)Bn(w)ci+l,j+m,k+n (2)

where ¢ denotes the control points which parameterise the transformation. The optimal
transformation is found by minimising a cost function associated with the global trans-
formation parameters as well as the local transformation parameters. The cost function
comprises two competing goals: The first term represents the cost associated with the
voxel-based similarity measure, in this case normalised mutual information [15]], while
the second term corresponds to a regularization term which constrains the transforma-
tion to be smooth [13]].

The resulting transformation T maps each point in the anatomy of the reference subject
S, to the corresponding point in the anatomy of subject S. Since the transformation T
is a sum (rather than a concatenation) of a global and local transformation, we need to
remove any dependency of the local transformation on the global transformation (which
is a result of the different position, orientation and size of each subject’s anatomy):

X+ d(X) = Tg_llbal (Tglobal(x) + Tlocal(x)) (3)

Thus, the deformation d describes the anatomical variability across the population class
in the coordinate system of the reference subject.

2.2 Construction of Statistical Deformation Models

The concept of statistical deformation models (SDMs) is closely related to the idea of
ASMs. The key difference is that we apply a principal component analysis (PCA) to
the deformation fields required to map one anatomy to another anatomy rather than to
corresponding points: Suppose that we have n deformation fields described as vectors
d;. These deformation fields are the result of the non-rigid registration algorithm de-
scribed in the previous section and map the anatomy of the reference subject S, into the



80 D. Rueckert, A.F. Frangi, and J.A. Schnabel

anatomy of the other individuals S; in the population class under investigation. Each
deformation field d; can be expressed as a concatenation of m 3-D vectors which de-
scribe the deformation at each voxel in the image of the reference subject. The goal of
SDMs is to approximate the distribution of d using a parameterised linear model of the

form )
d=d+ ®b (@)

where d is the average deformation field for all n subjects,

> d; (5)
=1

and b is the model parameter vector. The columns of the matrix ® are formed by the
principal components of the covariance matrix S:

d=

S

LS (- dydi - a7 ©)

i=1

S:

n—1

From this, we can calculate the principal modes of variation of the deformation field as
the eigenvectors ¢; and corresponding eigenvalues \; (sorted so that A; > \; 1) of S.

2.3 Interpretation of Statistical Deformation Models

A common problem encountered during the construction of a model of the average
anatomy is the choice of the reference subject to which all other subjects are registered.
Even though the reference subject selected may be considered normal, it may represent
an extremum of a normal distribution. Assuming a perfect registration, the registration
will align the anatomy of each subject with the anatomy of the reference subject. Thus,
the average model will be constructed in the coordinate system of the reference subject.
To remove any bias of the average model towards a particular anatomy, we can con-
struct the average model of the anatomy in its natural coordinate system. This natural
coordinate system is the coordinate system which requires the least residual deforma-
tion to explain the anatomical variability across all individuals. Based on a point x in
the space of the reference subject we can find the corresponding point x’ in its natural
coordinates by applying the average deformation vector d:

x' =x+d(x) (7

Within this natural coordinate system we can now study the anatomical variability of
the population class under investigation. Recall that in eq. () the vector b provides a
parameterisation of the deformations in terms of its principal modes. Varying the pa-
rameter vector b will generate different instances of the deformation field. By applying
these deformation fields to the average anatomy we can generate instances of the class
of anatomy under analysis. Under the assumption that the cloud of deformation vectors
at each point follows a multi-dimensional Gaussian distribution, the variance of the i-th
parameter, b;, across the population is given by eigenvalue ;. By applying limits to the
variation of b;, for instance |b;| < 434/, it can be ensured that a generated anatomy
is similar to the anatomies in the training class.
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Registration L. nucleus caudate|R. nucleus caudate
Affine 48.86% 41.35%
Non-rigid (20 mm) 62.56% 58.98%
Non-rigid (10 mm) 75.01% 74.75%
Non-rigid (5 mm) 86.73% 85.65%

Table 1. Average overlap between the left and right nucleus caudate of the reference
subject after registration with all other individuals.

3 Results

To demonstrate our approach we have used 25 brain MR images from different subjects
with schizophrenia to construct a statistical deformation model of the brain. All images
were acquired at the Department of Psychiatry of the University Medical Center Utrecht
using a 3D FFE sequence (TE = 4.6 ms, TR = 30 ms, flip angle =30°) ona 1.5 T MR
imaging system (Philips Gyroscan ACS-NT). These images have a voxel size of 1 x 1 x
1.2 mm? and 200 x 200 x 160 voxels. Out of the 25 subjects we have randomly selected
one individual which was used as the reference subject. We have then registered each of
the remaining 24 individuals to this reference subject. For the non-rigid registration we
have used control point spacings of 20 mm, 10 mm and finally 5 mm [[13]14]. In order
to assess the quality of the inter-subject registration, we have calculated the overlap
between a manually segmented deep structure in the brain, the nucleus caudate, after
affine and non-rigid registration. The results summarised in Table [1] show that after
non-rigid registration the average overlap between the nucleus caudate of the reference
subject and those of the remaining 24 individuals is more than 85%. Given the small
size of the nucleus caudate this indicates a very good registration.

The first step of the construction of statistical deformation models is to build a model
of the average anatomy of all subjects after non-rigid registration. The resulting atlas
constructed in the coordinate system of the reference subject is shown in the top row of
Figure [[lin form of an average intensity imagcﬂ. In the second step we have removed
any bias of the atlas towards the reference subject by applying the average deformation
d to the atlas. The resulting atlas in its natural coordinate system is shown in the bottom
row of Figure[T] In this example we can clearly see that the average reproduces the large
ventricular system of the subject chosen as reference subject. Removing any bias of the
atlas towards the reference subject yields an average model in which the ventricular
system is significantly smaller.

The final step of the construction of statistical deformation models is the calculation of
the principal modes of variation of the deformation field which give an indication of
the anatomical variability across the population under investigation. We can generate
the modes of variation by varying the shape parameter b; and applying the resulting
deformation field to the atlas. An example of the first three modes of variation is shown
in Figure [2| Note, that in contrast to AAMs [[10], our model does not incorporate any
statistical information about intensities so that the intensities of the atlas are not affected

! Animated versions of Figure 1 and 2 are available at http://www.doc.ic.ac.uk/"dt/MICCAIO1.
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Fig.1. The top row shows a coronal, axial and sagittal view of the average brain atlas
of 25 different subjects constructed in the space of the reference subject. The bottom
row shows the coronal, axial and sagittal view of the average brain atlas of 25 different
subjects constructed in natural atlas coordinates. This coordinate system is obtained by
applying the average deformation d to the coordinate system of the reference subject.

by the modes of variation. The total number of modes of variation corresponds to the
number of individuals in the population class excluding the reference subject. In our
example we have 24 different modes of variation of which the first 10 modes explain
more than 70% of the cumulative anatomical variability while the first 18 modes explain
more than 90% of this variability.

The interpretation of the modes of variation is difficult since they are not only the result
of the variability of a single anatomical structure but the result of the variability of a
large number of different anatomical structures as well as their inter-relationship. The
interpretation is further complicated by the fact that a dense deformation field requires
performing a PCA on a very high dimensional space (200 x 200 x 160 = 6.4 mil-
lion deformation vectors). However, we can significantly reduce the dimensionality by
performing the PCA directly on the control points of the FFD (40 x 40 x 32 = 51200
control points). This provides a very compact representation of deformation fields using
B-spline basis functions. In future experiments we are planning to use a larger number
of subjects to allow a robust statistical analysis of the deformation fields.

4 Discussion and Conclusions

In this paper we have presented a new method for the automatic construction of sta-
tistical deformation models (SDM). These models can be used to build an atlas of the
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Fig.2. Instances of the statistical deformation model showing the corpus callosum:
Each image has been generated by varying the first three modes of variation between
—3+/A; (top row) and +3+/; (bottom row). The middle row corresponds to the average
model.

average anatomy as well as its variability. This is achieved by performing a principal
component analysis of the deformations required to map the anatomy of a reference
subject to all other subjects in the population. A similar statistical analysis of defor-
mation fields has been proposed by Gee et al. [[Z]. The key difference to the work by
Gee et al. is the fact that our approach exploits the compact parameterization of the
deformation fields by the B-spline representation. Our method can also be used for the
construction of “stable” anatomical models which are not dependent on the choice of
the reference subject. A related approach has been pursued by Guimond et al. [8]. Their
approach also uses average deformations to construct an atlas of the shape and inten-
sity. The advantage of the framework presented in this paper stems from the fact that
the proposed framework allows not only to construct an atlas of the average anatomy
but also a model of the principal modes of variation of this anatomy. This may be used
to compare the morphometrics of an individual with those of a group or across different
groups of individuals.

In practice inter-subject registration is a very challenging task and will lead to registra-
tion errors. In previous experiments we have found that our algorithm yields a regis-
tration accuracy between 1 and 2 mm when comparing different anatomical landmarks
across individuals. This compares to an intra-observer variability between 0.2 and 0.9
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mm for the localisation of anatomical landmarks. We are currently investigating the ef-
fect of registration errors on the statistical analysis of the deformation fields in more
detail. We are also aiming to incorporate knowledge about landmarks into the registra-
tion algorithm.
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