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characteristic of ultrasound data, a full volume representation of brain deformation
would be difficult to construct from ultrasound alone. In contrast, a computational
model could retain the advantages of MR image quality by warping preoperative
images based on computed displacements. In previous studies, we have demonstrated
the feasibility of using a model based on consolidation physics to recover brain shift
[11-13]. Nonetheless, it is likely critical to obtain sparse intraoperative data to help
drive model calculations. The advantages of ultrasound make it well suited for
providing this information.
   This paper describes an initial study designed to validate the use of 3D ultrasound as
sparse data. We outline our procedure for relating the ultrasound image to the MR
stack and matching homologous features. As a measure of error, we present the
degree of rotation and translation needed to align each pair of images. Finally, we
explore the results of edge detection in MR and ultrasound in the context of extracting
sparse displacement data. Specifically, we investigate the level of feature congruence
that may be obtainable in the OR during clinical cases that lack high contrast
structures (e.g. tumor margins) or well-demarked surfaces (e.g. ventricles) that may
not be present or visible in many cases.

2. Method

The initial registration of ultrasound and MR data is performed using an optical
tracking system, which records the location of the ultrasound scanhead in real time.
In this stage of registration, each ultrasound image is registered to the MR image
stack, making it possible to reconstruct an oblique MR slice in the same orientation as
the ultrasound image plane. The registration is then refined locally by aligning the
edges of corresponding features in ultrasound and MR data. This image-based re-
registration is classical in nature, and still in preliminary stages of development.
Others groups have shown success in using mutual information (MI) or correlation
ratio (CR) to co-register ultrasound and MR images (or other multimodal data) [14-
17]. These image-based methods seek to register ultrasound and MR without the aid
of tracking systems, and therefore the registration is performed over a larger volume.
Our goal is somewhat different; we seek to improve the initial tracking-based
registration over a localized region of interest, by exploiting some operator input, in
order to investigate the visibility of less obvious feature edges in both ultrasound and
MR. As a result, we opted to use the relatively simple techniques described here,
rather than more sophisticated image-based registration strategies despite the fact that
future work may benefit from incorporation of MI or CR into this refinement process.

2.1 Materials

Our 3D ultrasound system consists of a 5MHZ intraoperative ultrasonography system
(Aloka Model 633; Corometrix Medical Systems, Wallingford, CT), a computer
equipped with a frame grabber (model DT3155; Data Translation, Marlboro, MA),
and a 3D optical tracker (Polaris; Northern Digital, Waterloo, Ontario, CAN). Image
processing was performed using intrinsic functions available in Matlab (Version 6.1,
Mathworks), as well as custom-built software, also written in Matlab.
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2.2 MR Reconstruction

Points in ultrasound coordinates are mapped to MR coordinates through a series of
coordinate transformations. These successive mappings are summarized in Eq.1,

mrP = usus
tr

tr
w

w
mr PTTT ,     (1)

where Pmr is a vector containing points in MR coordinates, Pus  is the corresponding
vector for points in ultrasound coordinates, and the remaining terms are the three
transformation matrices: the transformation from ultrasound to tracker coordinates
(trTus), which is obtained through a complex calibration procedure; the transformation
from tracker coordinates to world coordinates (wTtr), which is provided by the Polaris
optical tracking system; and the transformation from world coordinates to MR
coordinates (mrTw), which is obtained through patient registration.  Previous analysis
of our calibration procedure has shown that by mapping the ultrasound calibration
points to world coordinates, we can recover the original world coordinates to within
an average RMS of 1.5 mm. Furthermore, an independent test of our ability to map a
point in ultrasound to its world coordinates showed that we could do so with an
average error of 2.32 mm. [19]. Our Polaris optical tracker has been found to have an
accuracy of approximately 0.33 mm, which is comparable to results reported by other
groups [5, 20].
   Reconstructing an oblique MR image begins by mapping each pixel in an
ultrasound image to the MR coordinate system, using Eq.1. The corresponding MR
pixel is then obtained by finding the nearest voxel. This is completed for every pixel
in the ultrasound image, resulting in two images of the same resolution (480×640
pixels). With an accurate registration, this pair of images should depict the same
features, though they may appear different in each modality. As a qualitative
approach to assessing alignment, we also create a colored composite of the two
images superimposed, with MR in the red channel, and ultrasound in the green
channel. This helps to visually identify common features in the two images.

2.3 Image Processing

We assess the accuracy of the MR reconstruction by extracting homologous features
from the two images using classical methods, which are mostly manual. Before
running an edge detection algorithm, the images are preprocessed to reduce noise and
enhance edge features. The ultrasound images are first are smoothed and enhanced
using a mean (averaging filter), followed by a median filter. For an n × n kernel, the
mean filter calculates the average of the pixels in the neighborhood, and reassigns the
mean intensity to the center pixel. This has the effect of blurring the image, with a
larger kernel creating greater blurring. The median filter calculates the median of its n
× n neighborhood, and assigns that value to the center pixel. MR images are enhanced
using an anisotropic diffusion algorithm [21]. This filter is designed to smooth
homogenous regions, while retaining sharp edges. The level of smoothness imposed
can be increased or decreased by changing the level of iterations, as well as the degree
of diffusion. For more challenging images, sometimes a combination of median, mean
and anisotropic diffusion filters were used on both ultrasound and MR images. A
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   It would be convenient if MR and ultrasound edges were always as apparent as they
are in the phantom; unfortunately, this is not usually the case. Images of brain features
such as the falx, tumors, and ventricles, which can be high contrast and easy to
recognize, have been used in other studies to register images or characterize
deformation [6,16,22]. However, these features are not always present in the region of
interest. With the patient data from this study, we show that it is possible to match
more subtle brain features, such as the interface between white and gray matter, as
well as sulcal patterns. Furthermore, we propose that when similar patterns emerge in
both images, these could be used for matching, even if the exact nature of the feature
is unclear.
   The results of the phantom study lead us to conclude that edges which appear to line
up in the MR and ultrasound image do, in fact, represent the same features. For
example, the distinction between white and gray matter is readily apparent in MR
images. By superimposing the ultrasound images on their oblique MR counterparts, it
was clear that strong ultrasonic reflections were produced at the white/gray matter
interface. Figure 2 shows a typical example of this echogenicity. Note that the bright
line in the ultrasound image is located in the same region as the gray/white matter
boundary displayed in the MR image.

Figure 3. Cropped ultrasound image (left) and its corresponding oblique MR reconstruction
(right). Arrow points to white/gray matter interface in both images. For reference, the
ultrasound scale and wedge shape are overlayed on the MR image

   By searching within a region of interest in the two images, we were also able to
match edges of more complex features with correlating patterns. For example, the
images shown in Figure 3 show similar patterns of parallel horizontal edges in the
lower left corner, and diagonal edges in the center. In this case, the features appear to
be sulcal patterns. It is important to note, however, that the features do not need to be
correctly categorized in order to recognize patterns in edges and find the translation
and rotation necessary to align the two sets of edges. Furthermore, while these
features were already closely aligned, it seems feasible to use this method of pattern
searching in ultrasound images depicting deformed brains, where features have
moved from their preoperative location. The region of interest would have to be
greater in order to find patterns in the displaced tissue that match patterns in the MR.
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After identifying similar features, the rotation and translation could be calculated
using a similar edge matching technique. Finally, the results of this displacement
calculation would be used as inputs to the computational model. Obviously, this
strategy needs to be explored further to validate its usefulness in the deformed case. It
may be that more sophisticated, automatic, image-based registration methods, such as
MI or CR, will need to be employed in order to realize a robust global edge-matching
technique.
   The results of the patient case should be interpreted with some caution. The images
analyzed represent the best ultrasound/MR pairs, in the sense that the features present
in one image are clearly related to those in the second image. Nonetheless, the results
are valuable in that they demonstrate the level of accuracy that can be achieved.
Furthermore, this selective process is a practical strategy for using sparse ultrasound
data in conjunction with the brain model. That is, it seems reasonable to use only the
best ultrasound/MR pairs to calculate local displacement as input to the model. Since
our motivation for using intraoperative ultrasound is to gain sparse displacement data,
rather than a full volume description, this limited selection is compatible with our
strategy.
   Another possible drawback of the method described here is that while we have
three-dimensional data, the edge matching analysis is performed in two dimensions.
Although this simplification is acceptable for an initial study, the displacement
calculated would represent only the projection of the actual displacement onto the 2D
image plane. It has been pointed out that if the 2D image lines up with the principle
direction of displacement, the 2D image may be adequate [6]. We have begun to
investigate the use of 3D data, with some encouraging initial results. Our current
approach still uses the 2D ultrasound image plane, but searches for a better match to
an oblique MR plane by integrating the 3D MR image volume. Figure 4 demonstrates
the results from matching one ultrasound image with an improved oblique MR slice.
This 3D method warrants further development; it does not yet incorporate multiple
ultrasound images in 3D, which may prove to be more robust. More sophisticated
image processing techniques also need to be developed in order to attain our goal of
predicting shift in real time.

Figure 4. Results from 3D edge matching on one set of ultrasound and MR images. Left figure
displays overlap of images before re-registration. Right figure displays images after 3D edge
matching isperformed.
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   Finally, we have proposed that less obvious features, such as gray/white matter
interfaces and sulcal patterns are potentially useful for extracting sparse intraoperative
data on brain tissue motion. While we present some initial findings on the relative
appearance of these structures in ultrasound and MR, a more extensive comparison of
the characteristics of brain features in various modalities would be quite helpful. Such
a study could provide a priori knowledge concerning feature boundaries, which would
be useful in automating the steps of segmentation and edge matching.
   The underlying assumption in the work presented  here is that the features occurring
in both image sets do in fact correspond to the same physical structures Given this
premise questions also arise as to whether the simple image processing and feature
extraction techniques we used apply appropriately across the differing image scales of
the two modalities. Certainly, the results from the phantom study (Fig. 1) and high
contrast in vivo data (Fig. 4) which exploited the same techniques suggest they do.
However, further study is required to thoroughly substantiate the approach in more
subtle low contrast cases (e.g. Fig. 2,3). Our intent was not to definitively validate the
methodology described herein, or even to necessarily endorse the approach above
other possibilities, but rather to indicate that opportunities exist for localized low-
contrast feature matching between intraoperative US and preoperative MR that could
constitute sparse data for full-volume MR updates achieved through computational
modeling.
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