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Abstract. Clinical diagnosis of prostate cancer is most often done by
transrectal ultrasound-guided needle biopsy. Because of the low resolu-
tion of ultrasound, however, the urologist cannot usually distinguish be-
tween cancerous and healthy tissue. Therefore, most biopsies follow stan-
dard protocols based on long-term physician experience. Recent studies
indicate that these protocols may have a significant rate of false nega-
tive diagnoses. This research develops optimized biopsy protocols. We
use real prostate specimens removed by prostatectomy to develop a 3D
distribution map of cancer in the prostate. We develop also a probability
model of the needle insertion procedure. Using this model, the tumor
map, and the geometry of the biopsy needle, we obtain estimates for the
probability of obtaining a positive biopsy in various zones of prostates
with cancer. We develop a nonlinear optimization problem that deter-
mines the protocols that maximize the probability of cancer detection
for a given number of needles, and present new optimized protocols.

1 Introduction

Prostate cancer is the most prevalent male malignancy and the second leading
cause of death by cancer in American men. The American Cancer Society esti-
mates that there will be about 198,100 new cases of prostate cancer in the United
States in 2001, and about 32,000 men will die of the disease. Current screening
for the cancer includes the prostate specific antigen (PSA) test and the digi-
tal rectal exam. However the cancer can only be correctly diagnosed by needle
biopsy of the prostate and histopathology of the sampled tissues. The most com-
mon technique for detection of prostate cancer is transrectal ultrasound-guided
(TRUS) needle core biopsy.

Since normal prostate tissue cannot usually be differentiated from cancerous
tissue during the biopsy, a number of standard protocols have been developed to
assist the urologist in performing the biopsy. The protocol most commonly used
is the systematic sextant biopsy [4]. Recent studies [1], [7] have shown, however,
that this strategy has an unacceptable level of false negative diagnoses, and that
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many patients who have a negative initial biopsy are found to have cancer in
repeat biopsies.

As a result, recent clinical studies have investigated new protocols that have
higher detection rates [2], [3]. The improvement in detection is obtained by using
additional needles (up to seven more) in the biopsy.

Our approach is different: our goal is to develop optimized biopsy protocols.
For a specified number of needles, an optimal protocol is one that maximizes the
probability of detection of cancer in a patient. The hope is that with optimized
protocols one could achieve improved detection rates with fewer needles.

A major component of our effort is the development of a statistical distri-
bution map of cancer in the prostate. The map is constructed from cancerous
prostates that were removed via prostatectomy. Each of the prostates is first re-
constructed into a 3D computerized model that accurately represent the anatomy
of the prostate, and the distribution of cancer within it. Next, each model is di-
vided into zones based on clinical conventions, and the presence of cancer in
each zone is calculated. From this the 3D distribution map of tumor location is
developed. Thus far, 301 prostates have been reconstructed and analyzed.

We have previously established a statistical distribution map and optimal
biopsy protocols for a 48-zone division of the prostate [8], [10]. The rationale for
the division is that it is likely the upper limit on the number of zones that can
still be accessible by the physician. A drawback of the model, however, is that
it assumes that a biopsy taken in a cancerous zone is bound to be positive. In
practice, it is possible that a biopsy in a cancerous zone will be negative.

In this paper we address this issue. Although we still maintain a coarse grid
(i.e., the 48-zone division) for the purpose of biopsy guidance for the physician,
we use a much finer grid for the development of a cancer distribution map. Each
of the 48 zones is thus further divided to a larger number of subzones, with each
subzone smaller in volume (and sometimes much smaller) than the needle core
size. The presence of cancer is evaluated in each subzone to create a fine-grid
cancer distribution map. This information is then used to estimate, for each
patient, the probability that a biopsy in a given zone will be positive, and in
turn, the probability that a given biopsy protocol will detect cancer. This leads
to more accurate estimates of detection rates, and improved biopsy protocols.

2 Reconstruction of the Prostate Models and Statistical
Distribution Map

The reconstruction of the prostates involved several steps [9]. Each prostate was
sectioned in 4µm sections at 2.25mm intervals, and each slice was digitized with
a scanning resolution of 1500 dots per inch. Each digitized image was segmented
by a pathologist to identify the key pathological structures, including surgical
margins, capsule, urethra, seminal vesicle, and the tumor. The contours of each
structure were identified on each slice, and then stacked up. Interpolation be-
tween pairs of contours was performed using a 3D elastic contour model. The 3D
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model of each structure in the prostate was finalized by tiling triangular patches
onto the interpolated contours, using a deformable surface-spine model.

(a) (b)

Fig. 1. Figure 1: 3D reconstruction of prostate models: (a) Final 3D recon-
structed prostate model. (b) 48-zone grid superimposed over prostate.

Next we determine the statistical distribution map. The coarse grid 48-zone
coarse grid used for biopsy guidance is illustrated in Figure 1. The grid has three
transverse layers, base, mid, and apex. Each such layer is further divided into
four coronal layers, which, following clinical conventions, are labeled from the
posterior to the anterior as posterior 1, posterior 2, anterior 1, and anterior 2
respectively. Finally, the layers are divided from left to right into four sagittal
layers, denoted as left lateral, left mid, right mid, and right lateral, respectively.
It is noted that the size of the zones will vary with the size of a prostate model.
A larger prostate model ends up with having a larger size for each of its 48 zones.
This variation of zone sizes is the natural and consistent reflection of the original
prostate, and it should not affect the accuracy of cancer distributions.

For determination of the statistical distribution map, each of the course-grid
compartments is further divided to smaller subzones. We have used a total of
53 subzones per zone, so that the final grid superimposed over the prostate has
6000 subzones. The occurrence of cancer is calculated in each of the subzones
for each of the patients; a subzone is considered positive for a given patient if
it contains any part of a cancer. Subzones that contain no prostate tissue are
marked accordingly.

Next, we estimate for each patient and for each of the coarse-grid zones,
the probability that a needle biopsy in the zone will detect cancer. To ensure
accuracy we will model the variability in the physician’s placement of the needle.
Specifically for each of the 48 zones we model (i) the depth of the needle insertion
point (from apex to base); (ii) the longitudinal position of the needle insertion
point (from posterior to anterior) and (iii) the firing angle of the needle. (Note
that the physician controls the firing angle by rotating the ultrasound probe
around its axis; there is only one degree of freedom, since the needle has a fixed
angle with respect to the axis of the ultrasound probe.) We now assume that
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for each zone the three corresponding random variables controlling the needle
trajectory are statistically independent Gaussian variables. (The parameters of
these distributions will vary from zone to zone.) We then use a discretization of
these distributions, to estimate for each patient, the probability that a needle
probe in the zone will be positive. The analysis is based on the fine-grid cancer
distribution map, the volume of each subzone, the geometry of the needle and
the volume of the needle core.

3 The Optimization Problem

3.1 Problem Formulation

We now develop a mathematical model that determines the optimal locations for
the biopsy needles based on the 3D cancer distribution model. The objective is
to determine, for a specified number of needles, the protocol that maximizes the
probability of detecting cancer. We note that while the detection rate increases
with the number of needles, using optimized strategies could permit using fewer
needles, thus avoiding patient discomfort and saving costs.

To formulate the problem, let n denote the number of zones in the coarse grid
(here n = 48), and let m denote the number of patients in our sample (m = 301).
Define variables xj , j = 1, . . . , n, by

xj =
{

1 if a biopsy is taken in zone j,
0 otherwise.

Let pij be the estimated probability that a needle in zone j will detect cancer
in patient i (i = 1, . . . , m, j = 1, . . . , n), and let qij = 1 − pij . We have that

(qij)xj =
{

1 if xj = 0
qij if xj = 1.

Now in general, the occurrence of cancer in adjacent prostate zones is correlated.
But for a given patient i in our sample the location of cancer is known, hence
the occurrence of cancer is no longer a random variable (but its realization).
In contrast, the outcome of a needle biopsy in a given zone for this patient is
a random variable. The randomness is due only to the uncertainty in how the
physician places the needle; if the placement of the needle were totally deter-
ministic, the outcome of the needle biopsy would also be deterministic. Since
the physician’s positioning of different needles can be assumed to be statistically
independent, the outcomes of needle biopsies in different zones can be assumed
to be statistically independent. Thus the probability that a set of needle biopsies
diagnoses cancer in patient i of our sample is

1 −
n∏

j=1

(qij)xj .
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It follows that the k-needle biopsy protocol that maximizes the probability of
detection for a randomly selected patient in our sample solves

maximize
1
m

m∑
i=1

(1 −
n∏

j=1

(qij)xj )

subject to
n∑

j=1

xj = k

xj ∈ {0, 1}

(1)

Note that when scaled by m, the objective function is the expected number of
patients in the sample to be diagnosed with cancer. Problem (1) can be written
equivalently as

minimize
m∑

i=1

n∏
j=1

(qij)xj

subject to
n∑

j=1

xj = k

xj ∈ {0, 1}

(2)

Additional constraints reflecting physician preferences can also be added.
For example, left-right symmetry of the protocols is obtained by the constraints
xl = xr for every pair of zones l and r that are left-right symmetric. One may
also restrict biopsies to zones in the posterior area ( since the anterior is more
difficult to probe), by imposing the constraint xa = 0 for all zones a in the
anterior. For simplicity we will let X denote the feasible set—the set of vectors
x ∈ {0, 1} that satisfy

∑n
j=1 xj = k and any additional desired constraint.

The optimization problem (2) is a nonlinear integer problem. In its current
form the problem is difficult to solve, since its objective is a nonconvex function
in the integer variables xj . However we can transform it to a more tractable
problem. Let ε be some (sufficiently) small positive tolerance (say, ε = 10−10),
and define the m × n matrix U by uij = − log(max{qij , ε}). Denoting zi =∑n

j=1 uijxj , the optimization problem is equivalent to the problem

minimize
m∑

i=1

e−zi

subject to z − Ux = 0
x ∈ X

(3)

Although the resulting problem is still nonlinear and integer, the transformed
form is more convenient, since the objective function is convex.

3.2 Solution of the Optimization Problem

To solve problem (3) we use a generalized decomposition algorithm [6] frame-
work. The idea is to decompose the problem in a way that enables the creation of
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a sequence of easier subproblems that gradually provide tighter lower and upper
bounds on the optimal objective. Here this is done as follows: We rewrite (3) as

minimize
x∈X

min
z

g(z) =
∑

e−zi

subject to z − Ux = 0︸ ︷︷ ︸
primal problem

(4)

Let L(x, λ) =
∑m

i=1 e−zi − λT (z − Ux) be the Lagrangian for the primal prob-
lem. Now because the problem is convex, its objective is equal to that of its
Lagrangian dual [6]. Hence (4) is equivalent to

minimize
x∈X

max
λ

min
z

(
∑

e−zi − λT (z − Ux)) . (5)

Problem (5) can be written in equivalent form

minimize
x∈X,δ

δ

δ ≥ min
z

(
∑

e−zi − λT (z − Ux)) ∀λ

Suppose we start from an initial feasible integer point x0. It is easy to show
that for a given vector xt, the solution to the primal problem in (4) is

zt = Uxt λt
i = −e−zt

i .

This yields at iteration t an upper bound UB=min{UB, g(xt} on the optimal
objective, where at iteration 0, UB=g(z0). Now given the iterates x0, . . . , xt, the
problem

minimize
x∈X,δ

δ

δ ≥ (λj)T Ux +
∑

e−zj
i − (λj)T zj , j = 0, . . . , t

is a “relaxation” of Problem 3.2, in the sense that it relaxes its constraints. Thus
the solution provides a lower bound on the optimal objective LB=δ and a new
starting xt+1 for the primal.

We can thus obtain a sequence of solutions to the primal problem and the dual
problem, with the former yielding a nonincreasing sequence of upper bounds to
the optimal objective value, and the latter yielding a nondecreasing sequence of
lower bounds to this objective value. The algorithm terminates when the upper
and lower bounds differ by less than a prescribed tolerance. The relaxed dual
problems are linear programs with integer variables, and are easily solved by the
software package ILOG CPlex 6.5 [5].

4 Optimized Protocols

We have obtained some preliminary results using the sample of 301 prostate
analyzed so far. The resulting estimated detection rates for optimized 6-, 8-, and
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10-needle biopsy protocols are shown in Table 1. As one can see, the estimated
detection rate for our optimal 6-needle protocols is about 79%. In contrast, the
estimated detection rate for the sextant method is about 67%. Thus it is possible
to improve detection rates with 6 needles only, just by using optimized protocols.
Additional needles will further improve the detection rates as indicated in the
Table. The corresponding optimal biopsy protocols are shown in Table 2.

Table 1. Estimated detection rates with optimized symmetric protocols using
6, 8, and 10 needles. Estimated detection rate for sextant method is 67.3%

No. of Needles Posterior Only Entire Gland

6 78.8% 79.3%
8 81.6% 82.9%
10 84.2% 85.5%

5 Conclusions and Future Work

Preliminary results show that the optimal biopsy protocols have a substantial
improvement over the protocols currently used clinically. Simulation using addi-
tional 100 prostate models is under way and initial results have also confirmed
this improvement. A post-optimality sensitivity analysis will also be performed
to assess the sensitivity of our solutions to the model’s parameters.

A new generation of image-guided prostate biopsy system is now being devel-
oped. We are developing an image segmentation technique to acquire the bound-
ary of a series of transverse ultrasound images of the prostate. These are used
to construct a 3-D prostate surface model of the patient. The intersection of the
ultrasound beam with the reconstructed 3-D model enables us to extract the cor-
responding cancer distribution information and optimized biopsy protocols and
to superimpose the information onto the ultrasound image as highlighted grids.
This information will significantly enhance the physicians’ situation awareness
and thus lead to a substantial improved performance of cancer detection.
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