Abstract
We present a simplified camera calibration algorithm taking advantage of the geometry of our operating microscope, and requiring no special calibration target. Simulations showed that this algorithm is moderately sensitive to inaccuracies in S and f. For nominal values of Sn=6 pix/mm and fn=300 mm, we found that a 5% deviation in the value of S results in a mean error of 0.99 mm, while a 5% deviation in the actual value of f results in a 0.81 mm mean error.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Roberts, D. W.; Miga, M. I.; Hartov, A.; Eisner, S.; Lemery, J. M.; Kennedy, F. E.; Paulsen, K. D. “Intraoperatively Updated Neuroimaging Using Brain Modeling and Sparse Data.” Neurosurgery, Vol. 45,No. 5, Nov. 1999.
Zhang, Z. “A Flexible New Technique for Camera Calibration” Technical Report MSR-TR-90-71. Microsoft Research. http://research.microsoft.com/~zhang
Devy, M; Garric, V.; Orteu, J. “Camera Calibration from Multiple Views of a 2D Object, Using a Global Non Linear Minimization Method.” Proc. IROS 97, pp 1583–1589.
Luong, Q.-T.; Faugeras, O.; “Self-Calibration of a Moving Camera from Point Correspondences and Fundamental Matrices” Int. J. of Computer Vision. 22(3):261–289, 1997.
Stein, G..Accurate Internal Camera Calibration Using Rotation, with Analysis of Sources of Error.” Proc. 5th Int. Conf. On Computer Vision. Pp 230–236, 1995.
Hartley, R. I. “An Algorithm for Self Calibration from Several Views.” Proc. IEEE Conf. On Computer Vision & Pattern Recognition. Pp. 908–912, Seattle, WA, 1994.
Wei, G.; Ma, S. “Implicit and Explicit Camera Calibration: Theory and Experiments.” IEEE Trans. On Pattern Analysis and Machine Intelligence. 16(5):469–480, 1994.
Faugeras, O.; “Three-Dimensional Computer Vision: a Geometric Viewpoint.” MIT press, 1993
Weng, J.; Cohen, P.; Herniou, M. “Camera Calibration with Distortion Models and Accuracy Evaluation.” IEEE Trans. On Pattern Analysis & Machine Intelligence, 14(10):965–980. 1992.
Caprile, B.; Torre, B. “Using Vanishing Points for Camera Calibration.” Int. J. of Computer Vision, 4, pp. 127–140, 1990
Gonzalez, R. C.; Wintz, P.; “Digital Image Processing.” 2nd edition. 1987.
Tsai, R. Y. “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses.” IEEE Journal of Robotics and Automation, Vol. RA-3,No. 4, Aug. 1987.
Hartov, A.; Eisner, S. D.; Roberts, D. W.; Paulsen, K. D.; Platenik, L. A.; Miga, M. I. “Error analysis for a free-hand three-dimensional ultrasound system for neuronavigation.” Neurosurgical Focus Vol 6,No. 3, article 5, 1999. Online publication: http://www.neurosurgery.org/focus/mar99/6-3-5.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hartov, A., Sun, H., Roberts, D.W., Paulsen, K.D. (2001). A Simplified Field-of-View Calibration Technique for an Operating Microscope. In: Niessen, W.J., Viergever, M.A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001. MICCAI 2001. Lecture Notes in Computer Science, vol 2208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45468-3_178
Download citation
DOI: https://doi.org/10.1007/3-540-45468-3_178
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42697-4
Online ISBN: 978-3-540-45468-7
eBook Packages: Springer Book Archive