Abstract
A simple electro-mechanical model of the heart is derived to best fit available cardiac images. The model is based on anisotropic linear elasticity and, from the electrical point of view, on the finite-element discretisation of the FitzHugh-Nagumo electric wave-propagation model. Present simulations include static image segmentation. By including biological and physical a priori knowledge, more realistic 4D images segmentation of the cardiac motion are expected.
Chapter PDF
Similar content being viewed by others
Keywords
- Tetrahedral Mesh
- Hexahedral Mesh
- Medical Image Computing
- Potential Genesis
- Actual Transmembrane Potential
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
R. Aliev and A. Panfilov. A simple two-variable model of cardiac excitation. Chaos, Solitons and Fractals, 3(7):293–301, 1996.
A.V. Holden AV and A.V. Panfilov. Computational biology of the heart, chapter Modelling propagation in excitable media, pages 65–99. John Wiley & Sons, 1996.
N. Ayache, D. Chapelle, F. Clément, Y. Coudière, H. Delingette, J.A. Désidéri, M. Sermesant, M. Sorine, and J. Urquiza. Towards model-based estimation of the cardiac electro-mechanical activity from ECG signals and ultrasound images. In Functional Imaging and Modeling of the Heart (FIMH’01), 2001 (submitted).
A. L. Bardou, P. M. Auger, P. J. Birkui, and J.-L. Chassé. Modeling of cardiac electrophysiological mechanisms: From action potential genesis to its propagation in myocardium. Critical Reviews in Biomedical Engineering, 24:141–221, 1996.
O. Berenfeld and J. Jalife. Purkinje-muscle rentry as a mechanism of polymorphic ventricular arrhytmias in a 3-dimensional model of the ventricles. Circ. Res., 82:1063–1077, 1998.
J. Bestel, F. Clément, and M. Sorine. A biomechanical model of muscle contraction. In Medical Image Computing and Computer-Assisted intervention (MICCAI’01), 2001.
Y. C. Fung. Biomechanics, Mechanical properties of living tissues. Springer-Verlag, 1993.
J. Hindmarsh and R. Rose. A model of the nerve impulse using two first-order differential equations. Nature, (296):162–164, 1982.
P. J. Hunter and B. H. Smaill. The analysis of cardiac function: a continuum approach. Biophysical molecular Biology, 1988.
Z. Knudsen, A.V. Holden, and J. Brindley. Qualitative modelling of mechano electrical feedback in a ventricular cell. Bulletin of mathematical biology, 6(59):115–181, 1997.
B. Kogan, W. Karplus, B. Billett, A. Pang, H. Karagueuzian, and S. Khan. The simplified fitzhugh-nagumo model with action potential duration restitution: effects on 2d wave propagation. Physica D, (50):327–340, 1991.
J. Montagnat and H. Delingette. Space and time shape constrained deformable surfaces for 4D medical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI’00), 2000.
M. Nash. Mechanics and Material Properties of the Heart using an Anatomically Accurate Mathematical Model. PhD thesis, University of Auckland, 1998.
A. Panfilov and A. Holden. Computer-simulation of reentry sources in myocardium in 2 and 3 dimensions. Journal of Theoretical Biology, 3(161):271–285, 1993.
X. Papademetris, A. J. Sinusas, D. P. Dione, and J. S. Duncan. Estimation of 3D left ventricle deformation from echocardiography. Medical Image Analysis, 5, 2001.
Q.C. Pham, F. Vincent, P. Clarysse, P. Croisille, and I. Magnin. A FEM-based deformable model for the 3D segmentation and tracking of the heart in cardiac mri. In Image and Signal Processing and Analysis (ISPA’01), 2001.
A.E. Pollard, N. Hooke, and C.S. Henriquez. Cardiac propagation simulation. Critical Reviews in biomedical Engineering, 20(3,4):171–210, 1992.
J. Rinzel. Excitation dynamics: insights from simplified membrane models. Federation Proceedings, 15(44):2944–2946, 1985.
J. Rogers, M. Courtemanche, and A. McCulloch. Computational biology of the heart, chapter Finite element methods for modelling impulse propagation in the heart, pages 217–233. John Wiley & Sons, 1996.
K. Simelius, J. Nenonen, R. Hren, and B.M. Horacek. Electromagnetic extracardiac fields simulated with a bidomain propagation model. In J. Nenonen, R.J. Ilmoniemi, and T. Katila, editors, International Conference on Biomagnetism (Biomag’00), 2000.
J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag (Grundlehren der mathematischen Wissenschaften 258), 1983.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sermesant, M., Coudière, Y., Delingette, H., Ayache, N., Désidéri, J.A. (2001). An Electro-mechanical Model of the Heart for Cardiac Image Analysis. In: Niessen, W.J., Viergever, M.A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001. MICCAI 2001. Lecture Notes in Computer Science, vol 2208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45468-3_27
Download citation
DOI: https://doi.org/10.1007/3-540-45468-3_27
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42697-4
Online ISBN: 978-3-540-45468-7
eBook Packages: Springer Book Archive