Skip to main content

On Mathematical Modeling of Networks and Implementation Aspects

  • Conference paper
  • First Online:
Artificial Intelligence, Automated Reasoning, and Symbolic Computation (AISC 2002, Calculemus 2002)

Abstract

Based on existing work where categorical and geometrical methods were used to establish a mathematical model of neural net structures, we develop a new very general model for artificial neural networks (ANN), where all basic components of a network are described abstractly. This mathematical model serves as a guideline for design and implementation of a new ANN-simulator. The proposed model of neuron types will be illustrated by the discussion of an example, using the Single Spiking Neuron Model (SSM). The main building blocks of the simulation tool, a new construction principle for ANN, and abstract modeling of connection weights are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Bower and D. Beeman. The book of GENESIS: Exploring realistic neural models with the GEnereal SImulation System. Springer-Verlag, NewYork, 1998.

    Google Scholar 

  2. R. Bernhaupt and J. Pfalzgraf. Time Coded Neurons, Geometric Networks and Homomorphic Learning In: Advances in Neural Networks and Applications, pages 268–273. World SES Press, 2001.

    Google Scholar 

  3. A. Delorme, J. Gautrais, R. Rullen, and S. Thorpe. SpikeNET: a simulator for modeling large networks of integrate and fire neurons. Neurocomputing, 26-27:989–996, 1999.

    Article  Google Scholar 

  4. H. Geiger. Optical quality control with selflearning systems using a combination of algorithmic and neural network approaches. Proceedings of the Second European Congress on Intelligent Techniques and Soft Computing, EUFIT’94, Aachen, September 20–23, 1994.

    Google Scholar 

  5. W. Gerstner. The Handbook of Biological Physics, volume 4, chapter 12, pages 447–494. Elsevier Science, 2001.

    Google Scholar 

  6. H. Geiger and J. Pfalzgraf. Quality control connectionist networks supported by a mathematical model. Proceedings of the International Conference on Engineering Applications of Artificial Neural Networks (EANN’95), 21–23 August 1995, Helsinki. A.B. Bulsari, S. Kallio (Editors), Finnish AI Society, 1995.

    Google Scholar 

  7. K. Lang. Single spiking neuronal networks for object recognition. Master’s thesis, Universität Salzburg, Institut für Computerwissenschaften, 2001.

    Google Scholar 

  8. W. Maass and C. M. Bishop. Pulsed Neural Networks. MIT Press, 1999.

    Google Scholar 

  9. J. Pfalzgraf. The concept of logical fiberings and fibered logical controllers. Proceedings CASYS 2000, August 2000, Liege, Belgium, American Institute of Physics, D. M. Dubois (ed.), 2000.

    Google Scholar 

  10. J. Pfalzgraf. A note on modeling connectionist network structures: geometric and categorical aspects. In Proceedings Artificial Intelligence and Symbolic Computation, AISC’2000, July 17–19, 2000, Madrid. Springer Lecture Notes in AI, vol.1930. J. Calmet, E. Roanes (Eds.), 2001.

    Google Scholar 

  11. J. Pfalzgraf. Modeling Connectionist Network Structures: Some Geometric and Categorical Aspects. Annals of Mathematics and AI (to appear), 2002.

    Google Scholar 

  12. J. Pfalzgraf and W. Meixl. A logical approach to model concurrency in multi agent systems. Proceedings EMCSR 2000, April 25–28, Vienna, 2000.

    Google Scholar 

  13. J. Sixt. Design of an artificial neural network simulator and its integration with a robot simulation environment. Master’s thesis, Johannes Kepler University Linz, Institute of Mathematics, 1994.

    Google Scholar 

  14. A. Zell. Simulation Neuronaler Netze. Addison-Wesley, Bonn, 1994.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernhaupt, R., Pfalzgraf, J. (2002). On Mathematical Modeling of Networks and Implementation Aspects. In: Calmet, J., Benhamou, B., Caprotti, O., Henocque, L., Sorge, V. (eds) Artificial Intelligence, Automated Reasoning, and Symbolic Computation. AISC Calculemus 2002 2002. Lecture Notes in Computer Science(), vol 2385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45470-5_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-45470-5_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43865-6

  • Online ISBN: 978-3-540-45470-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics