Skip to main content

On the Tree-Degree of Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2204))

Included in the following conference series:

Abstract

Every graph is the edge intersection graph of subtrees of a tree. The tree-degree of a graph is the minimum maximal degree of the underlying tree for which there exists a subtree intersection model. Computing the tree-degree is NP-complete even for planar graphs, but polynomial time algorithms exist for outer-planar graphs, diamond-free graphs and chordal graphs. The number of minimal separators of graphs with bounded tree-degree is polynomial. This implies that the treewidth of graphs with bounded tree-degree can be computed efficiently, even without the model given in advance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S., D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Alg. Discrete methods 8, (1987), pp. 277–284.

    Article  MATH  MathSciNet  Google Scholar 

  2. Berry, A., J.-P. Bordat, O. Cogis, Generating all the minimal separators of a graph, Internat. J. Found. Comput. Sci. 11 (2000), pp. 397–403.

    Article  MathSciNet  Google Scholar 

  3. Booth, K. S., G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. Syst. Sci. 13 (1976), pp. 335–379.

    MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H. L., D. M. Thilikos, Tree width of graphs with small chordality, Discrete Applied Mathematics 79, (1997), pp. 45–61.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bouchitté, V., I. Todinca, Minimal triangulations for graphs with “few” minimal separators, Proceedings ESA’98, LNCS 1461, Springer, 1998, pp. 344–355.

    Google Scholar 

  6. Brandstädt, A., V. B. Le, and J. P. Spinrad, Graph-classes—A Survey, SIAM monographs on discrete mathematics and application, Philadelphia, (1999).

    Google Scholar 

  7. Breu, H., D. G. Kirkpatrick, Unit disk graph recognition is NP-hard, Comput. Geom. 9, (1998), pp. 3–24.

    Article  MATH  MathSciNet  Google Scholar 

  8. Erdős, P., A. Goodman, L. Pósa, The representation of graphs by set intersection, Cand. J. Math. 18, (1966), pp. 106–112.

    Google Scholar 

  9. Gavril, F., The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory 16, (1974), pp. 47–56.

    Article  MATH  MathSciNet  Google Scholar 

  10. Golumbic, M. C., Algorithmic graph theory and perfect graphs, Academic press, NewY ork, (1980).

    MATH  Google Scholar 

  11. Golumbic, M. C., R. E. Jamison, Edge and vertex intersections of paths in trees, Discrete Math. 55, (1995), pp. 151–159.

    Article  MathSciNet  Google Scholar 

  12. Golumbic, M. C., R. E. Jamison, The edge-intersection graphs of paths in a tree, J. Comb. Theory B 38, (1985), pp. 8–22

    Article  MATH  MathSciNet  Google Scholar 

  13. Holyer, I., The NP-completeness of some edge-partition problems, SIAM J. Comput. 4, 1981, pp. 713–717.

    Article  MathSciNet  Google Scholar 

  14. Hoover, D. N., Complexity of graph covering problems for graphs of lowdegree, JCMCC 11, 1992, pp. 187–208.

    MATH  MathSciNet  Google Scholar 

  15. Kou, L. T., L. J. Stockmeyer and C. K. Wong, Covering edges by cliques with regard to keyword conflicts and intersection graphs, Comm. ACM 21, 1978, pp. 135–139.

    Article  MATH  MathSciNet  Google Scholar 

  16. Kratochvíl, J., String graphs II. Recognising string graphs in NP-hard, J. Comb. Theory B, 52, (1991), pp. 67–78.

    Article  MATH  Google Scholar 

  17. Lovász, L., On coverings of graphs, in: P. Erdős and G. Katona eds., Proceedings of the Colloquium held at Tihany, Hungary, 1966, Academic Press, New York, 1968, pp. 231–236.

    Google Scholar 

  18. Ma, S., W. D. Wallis and J. Wu, Clique covering of chordal graphs, Utilitas Mathematica 36, (1989), pp. 151–152.

    MATH  MathSciNet  Google Scholar 

  19. Orlin, J., Contentment in graph theory, Proc. of the Nederlandse Academie van Wetenschappen, Amsterdam, Series A, 80, 1977, pp. 406–424.

    MathSciNet  Google Scholar 

  20. Pullman, N. J., Clique covering of graphs IV. Algorithms, SIAM J. Comput. 13, (1984), pp. 57–75.

    Article  MATH  MathSciNet  Google Scholar 

  21. Tarjan, R. E., Decomposition by clique separators, Discrete Mathematics 55, (1985), pp. 221–223.

    Article  MATH  MathSciNet  Google Scholar 

  22. Uehara, R., NP-complete problems on a 3-connected cubic planar graph and their application, Technical report TWCU-M-0004, Tokyo 1996. http://www.komazawa-u.ac.jp/~uehara/ps/triangle.ps.gz

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chang, MS., Müller, H. (2001). On the Tree-Degree of Graphs. In: Brandstädt, A., Le, V.B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2001. Lecture Notes in Computer Science, vol 2204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45477-2_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-45477-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42707-0

  • Online ISBN: 978-3-540-45477-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics