Skip to main content

Visual Clustering of Trademarks Using the Self-Organizing Map

  • Conference paper
  • First Online:
Image and Video Retrieval (CIVR 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2383))

Included in the following conference series:

  • 629 Accesses

Abstract

This paper describes the experiments used to investigate ways in which digitised trademark images can be visually clustered on a 2-D surface, using the topological properties of the self-organizing map. Experiments were carried out on a set of original and edge detected binary trademark images, as well as their moment invariants, angular radial transformations and wavelet feature vectors. A radial based precision-recall measure was also used to evaluate the results objectively. Initial results are encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain A. K., Vailaya A., Shape-Based Retrieval: A Case Study With Trademark Image Databases, Pattern Recognition, Vol. 31, No. 9, p1369–1390 (1998).

    Article  Google Scholar 

  2. Pentland A., Picard R. W., Sclaroff S., Photobook: Content-based manipulation of image databases, International Journal of Computer Vision, Vol. 18, No 3, p233–254 (1996).

    Article  Google Scholar 

  3. Gonzales R. C, Woods R. E., Digital Image Processing, Addison-Wesley (1993).

    Google Scholar 

  4. Mehtre B. M., Kankanhalli M. S., Lee W. F., Shape Measures for Content Based Image Retrieval: a Comparison, Information Processing & Management, Vol. 33, No. 3, p319–337 (1997).

    Article  Google Scholar 

  5. Hu M. K., Visual Pattern Recognition by Moment Invariants, IRE Transactions Information Theory, Vol. IT-8, p179–187 (1962).

    Google Scholar 

  6. Sikora T., The MPEG-7 Visual Standard for Content Description-An Overview, IEEE Transactions on Circuits and System for Video Technology, Vol. 11, No. 6, p696–702 (2001).

    Article  MathSciNet  Google Scholar 

  7. Teh C. H., Chin R. T., Image Analysis by Methods of Moment, IEEE Transactions of PAMI, Vol. 10, No 4, p496–513 (1988).

    MATH  Google Scholar 

  8. Rui Y., She A. C, Huang T. S., Modified Fourier descriptors for shape representation-a practical approach, Proceedings of the First International Workshop on Image Databases and Multi Media Search (1996).

    Google Scholar 

  9. Mallet S. G., A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions of PAMI, Vol. 11, No. 7, p674–693 (1989).

    Google Scholar 

  10. Ravel S., Manmatha R., Multi-modal retrieval of trademark images using global similarity, Internal Report, University of Massachusetts, Amherst (1998).

    Google Scholar 

  11. Santini S., Jain R., The El Niño Database System, Proceedings of the IEEE International Conference on Multimedia Systems and Computing (June 1999).

    Google Scholar 

  12. Duda R. O., Hart P. E., Stork D. G., Pattern Classification, John Wiley & Sons (2001 2nd Edition).

    Google Scholar 

  13. Kohonen T., Self-Organizing Maps, Springer Verlag (2001 3rd Ed).

    Google Scholar 

  14. Eakins J. P., Broadman J. M., Graham M. E., Similarity Retrieval of Trademark Images, IEEE MultiMedia, April-June, p53–63 (1998).

    Google Scholar 

  15. Wang J. Z., Wiederhold G., Firschein, O., Wei S. X., Content-based image indexing and searching using Daubechies’ wavelets, International Journal on Digital Libraries, Vol. 1, p311–328 (1997).

    Article  Google Scholar 

  16. Salton G., McGill M. J., Introduction to Modern Information Retrieval, McGraw-Hill. (1983).

    Google Scholar 

  17. Alwis S., Austin J., An Integrated Framework for Trademark Image Retrieval using Gestalt Features and CMM Neural Network, IEE Image Processing and its Application, Conference Publication No 465, p290–295 (1999).

    Google Scholar 

  18. Koskela M., Laaksonen J., Laakso S., Oja E., The PicSOM Retrieval System: Description and Evaluation, Proceedings of The Challenge of Image Retrieval, Third UK Conference on Image Retrieval, Brighton UK (2000).

    Google Scholar 

  19. Hodge V. J., Austin J., Hierarchical Growing Cell Structures: TreeGCS, IEEE Knowledge and Data Engineering, Vol. 13, No 2 March/April (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hussain, M., Eakins, J., Sexton, G. (2002). Visual Clustering of Trademarks Using the Self-Organizing Map. In: Lew, M.S., Sebe, N., Eakins, J.P. (eds) Image and Video Retrieval. CIVR 2002. Lecture Notes in Computer Science, vol 2383. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45479-9_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45479-9_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43899-1

  • Online ISBN: 978-3-540-45479-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics