Skip to main content

The Role of Natural Image Statistics in Biological Motion Estimation

  • Conference paper
  • First Online:
Biologically Motivated Computer Vision (BMCV 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1811))

Included in the following conference series:

Abstract

While a great deal of experimental evidence supports the Reichardt correlator as a mechanism for biological motion detection, the correlator does not signal true image velocity. This study examines the accuracy with which physiological Reichardt correlators can provide velocity estimates in an organism’s natural visual environment. Both simulations and analysis show that the predictable statistics of natural images imply a consistent correspondence between mean correlator response and velocity, allowing the otherwise ambiguous Reichardt correlator to act as a practical velocity estimator. A computer vision system may likewise be able to take advantage of natural image statistics to achieve superior performance in real-world settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. Adelson and J. R. Bergen. The extraction of spatio-temporal energy in human and machine vision. In Proceedings from the Workshop on Motion: Representation and Analysis, pages 151–55, Charleston, SC, 1986.

    Google Scholar 

  2. E. H. Adelson and J.R. Bergen. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A, 2:284–99, 1985.

    Google Scholar 

  3. D. W. Dong and J. J. Atick. Statistics of natural time-varying images. Network: Computation in Neural Systems, 6:345–58, 1995.

    Article  MATH  Google Scholar 

  4. R. O. Dror. Accuracy of velocity estimation by Reichardt correlators. Master’s thesis, University of Cambridge, Cambridge, U.K., 1998.

    Google Scholar 

  5. R. O. Dror, D. C. O’Carroll, and S. B. Laughlin. Accuracy of velocity estimation by Reichardt correlators. Submitted.

    Google Scholar 

  6. M. Egelhaaf, A. Borst, and W. Reichardt. Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system. J. Opt. Soc. Am. A, 6:1070–87, 1989.

    Google Scholar 

  7. R. C. Emerson, M. C. Citron, W. J. Vaughn, and S. A. Klein. Nonlinear directionally selective subunits in complex cells of cat striate cortex. J. Neurophysiology, 58:33–65, 1987.

    Google Scholar 

  8. D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A, 4:2379–94, 1987.

    Google Scholar 

  9. R. A. Harris, D. C. O’Carroll, and S. B. Laughlin. Adaptation and the temporal delay filter of fly motion detectors. Vision Research, 39:2603–13, 1999.

    Article  Google Scholar 

  10. D. J. Heeger. Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9:181–97, 1992.

    Google Scholar 

  11. S. B. Laughlin. Matching coding, circuits, cells and molecules to signals: general principles of retinal design in the fly’s eye. Prog. Ret. Eye Res., 13:165–95, 1994.

    Article  Google Scholar 

  12. Suzanne P. McKee, Gerald H. Silverman, and Ken Nakayama. Precise velocity discrimination despite random variations in temporal frequency and contrast. Vision Research, 26:609–19, 1986.

    Article  Google Scholar 

  13. D. C. O’Carroll and R. O. Dror. Velocity tuning of hoverfly HS cells in response to broad-band images. In preparation.

    Google Scholar 

  14. T. Poggio and W. Reichardt. Visual control of orientation behaviour in the fly. Part II. Towards the underlying neural interactions. Quarterly Reviews of Biophysics, 9:377–438, 1976.

    Article  Google Scholar 

  15. W. Reichardt. Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In A. Rosenblith, editor, Sensory Communication, pages 303–17. MIT Press and John Wiley and Sons, New York, 1961.

    Google Scholar 

  16. R. Sarpeshkar, W. Bair, and C. Koch. An analog VLSI chip for local velocity estimation based on Reichardt’s motion algorithm. In S. Hanson, J. Cowan, and L. Giles, editors, Advances in Neural Information Processing Systems, volume 5, pages 781–88. Morgan Kauffman, San Mateo, 1993.

    Google Scholar 

  17. E.P. Simoncelli. Modeling the joint statistics of images in the wavelet domain. In Proc SPIE, 44th Annual Meeting, volume 3813, Denver, July 1999.

    Google Scholar 

  18. M. V. Srinivasan, S. W. Zhang, M. Lehrer, and T. S. Collett. Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol., 199:237–44, 1996.

    Google Scholar 

  19. D. J. Tolhurst, Y. Tadmor, and T. Chao. Amplitude spectra of natural images. Ophthalmology and Physiological Optics, 12:229–32, 1992.

    Article  Google Scholar 

  20. A. van der Schaaf and J. H. van Hateren. Modelling the power spectra of natural images: statistics and information. Vision Research, 36:2759–70, 1996.

    Article  Google Scholar 

  21. J. P. H. van Santen and G. Sperling. Elaborated Reichardt detectors. J. Opt. Soc. Am. A, 2:300–21, 1985.

    Google Scholar 

  22. F. Wolf-Oberhollenzer and K. Kirschfeld. Motion sensitivity in the nucleus of the basal optic root of the pigeon. J. Neurophysiology, 71:1559–73, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dror, R.O., O’Carroll, D.C., Laughlin, S.B. (2000). The Role of Natural Image Statistics in Biological Motion Estimation. In: Lee, SW., Bülthoff, H.H., Poggio, T. (eds) Biologically Motivated Computer Vision. BMCV 2000. Lecture Notes in Computer Science, vol 1811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45482-9_50

Download citation

  • DOI: https://doi.org/10.1007/3-540-45482-9_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67560-0

  • Online ISBN: 978-3-540-45482-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics