Skip to main content

A Humanoid Vision System for Versatile Interaction

  • Conference paper
  • First Online:
Biologically Motivated Computer Vision (BMCV 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1811))

Included in the following conference series:

  • 773 Accesses

Abstract

This paper presents our approach towards a humanoid vision system which realizes real human interaction in a real environment. Requirements for visual functions are extracted from a past work on human action recognition system. Then, our recent development of biologically inspired vision systems for human interaction is presented as case studies on how to choose and exploit biological models, mix them with engineering solutions, and realize an integrated robotic system which works in real time in a real environment to support human interaction. A binocular active vision system with foveated wide angle lenses, a real time tracking using velocity and disparity cues, a real-time multi-feature attentional system, and a human motion mimicking experiment using a humanoid robot are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching: Extracting reusable task knowledge from visual observation of human performance. IEEE Trans. Robotics and Automation, 10(5), 1994.

    Google Scholar 

  2. Y. Kuniyoshi and H. Inoue. Qualitative recognition of ongoing human action sequences. In Proc. IJCAI93, pages 1600–1609, 1993.

    Google Scholar 

  3. Y. Kuniyoshi, N. Kita, S. Rougeaux, and T. Suehiro. Active stereo vision system with foveated wide angle lenses. In S.Z. Li, D.P. Mital, E.K. Teoh, and H. Wang, editors, Recent Developments in Computer Vision, Lecture Notes in Computer Science 1035. Springer-Verlag, 1995. ISBN 3-540-60793-5.

    Google Scholar 

  4. Y. Kuniyoshi, N. Kita, K. Sugimoto, S. Nakamura, and T. Suehiro. A foveated wide angle lens for active vision. In Proc. IEEE Int. Conf. Robotics and Automation, pages 2982–2988, 1995.

    Google Scholar 

  5. G. Sandini and V. Tagliaso. An anthropomorphic retina-like structure for scene analysis. Computer Graphics and Image Processing, 14(3):365–372, 1980.

    Article  Google Scholar 

  6. G. Sandini et al. Giotto: Retina-like camera. Technical report, DIST-University of Genova, 1999.

    Google Scholar 

  7. R.S. Wallace, B.B. Bederson, and E.L. Schwartz. A miniaturized active vision system. International Conference on Pattern Recognition, pages 58–61, 1992.

    Google Scholar 

  8. W. Klarquist and A. Bovik. Fovea: a foveated vergent active stereo system for dynamic three-dimensional scene recovery. In Proc., IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998.

    Google Scholar 

  9. M. Peters and A. Sowmya. A real-time variable sampling technique for active vision: Diem. In Proc., International Conference on Pattern Recognition, Brisbane, Australia, 1998.

    Google Scholar 

  10. A. Wavering, J. Fiala, K. Roberts, and R. Lumia. Triclops: A high performance trinocular active vision system. In Proc., IEEE International Conference on Robotics and Automation, pages 3:410–417, 1993.

    Google Scholar 

  11. B. Scassellati. A binocular, foveated, active vision system. Technical Report MIT AI Memo 1628, Massachussetts Institute of Technology, January 1998.

    Google Scholar 

  12. Y. Suematsu and H. Yamada. A wide angle vision sensor with fovea-design of distortion lens and the simulated inage-. In Proc., IECON93, volume 1, pages 1770–1773, 1993.

    Google Scholar 

  13. S. Rougeaux and Y. Kuniyoshi. Robust real-time tracking on an active vision head. In Proceedings of IEEE International Conference on Intelligent Robot and Systems (IROS), volume 2, pages 873–879, 1997.

    Google Scholar 

  14. S. Rougeaux and Y. Kuniyoshi. Velocity and disparity cues for robust real-time binocular tracking. In International Conference on Computer Vision and Pattern Recognition, Puerto Rico, pages 1–6, 1997.

    Google Scholar 

  15. J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical ow techniques. International Journal of Computer Vision, 12(1):43–77, February 1994.

    Article  Google Scholar 

  16. B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proc. DARPA Image Understanding Workshop, pages 121–130, 1981.

    Google Scholar 

  17. D. J. Fleet and K. Langley. Recursive filters for optical flow. IEEE Transaction on Pattern Analysis and Machine Intelligence, 17(1):61–67, January 1995.

    Article  Google Scholar 

  18. E. P. Simoncelli, E. H. Adelson, and D. J. Heeger. Probability distribution of optical flow. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 310–315, 1991.

    Google Scholar 

  19. K.J. Bradshaw, P.F. McLauchlan, I.D. Reid, and D.W. Murray. Saccade and pursuit on an active head/eye platform. Image and Vision Computing journal, 12(3):155–163, 1994.

    Article  Google Scholar 

  20. D. Coombs and C. Brown. Real-time smooth pursuit tracking for a moving binocular robot. Computer Vision and Pattern Recognition, pages 23–28, 1992.

    Google Scholar 

  21. T. D. Sanger. Stereo disparity computation using gabor filters. Biol. Cybern., 59:405–418, 1988.

    Article  Google Scholar 

  22. D. J. Fleet. Stability of phase information. Transaction on Pattern Analysis and Machine Intelligence, 15(12):1253–1268, 1993.

    Article  Google Scholar 

  23. J. Y. Weng. Image matching using the windowed fourier phase. International Journal of Computer Vision, 11(3):211–236, 1993.

    Article  Google Scholar 

  24. C. J. Westelius. Focus of Attention and Gaze Control for Robot Vision. PhD thesis, Linkoping University, 1995.

    Google Scholar 

  25. O. Stasse, Y. Kuniyoshi, and G. Cheng. Development of a biologically inspired real-time visual attention system. In Proceedings of IEEE International Workshop on Biologically Motivated Computer Vision (BMCV), 2000.

    Google Scholar 

  26. K. R. Cave. The featuregate model of visual selection. (in review), 1998.

    Google Scholar 

  27. J. A. Driscoll, R. A. Peters II, and K. R. Cave. A visual attention network for a humanoid robot. In IROS 98, 1998.

    Google Scholar 

  28. O. Stasse and Y. Kuniyoshi. Predn: Achieving eficiency and code re-usability in a programming system for complex robotic applications. In IEEE International Conference on Robotics and Automation, 2000.

    Google Scholar 

  29. G. Cheng and Y. Kuniyoshi. Complex continuous meaningful humanoid interaction: A multi sensory-cue based approach. In Proceedings of IEEE International Conference on Robotics and Automation, April 2000. (to appear).

    Google Scholar 

  30. J. Piaget. La Formation du Symbole chez l’Enfant. 1945.

    Google Scholar 

  31. Y. Kuniyoshi and A. Nagakubo. Humanoid Interaction Approach: Exploring Meaningful Order in Complex Interactions. In Proceedings of the International Conference on Complex Systems, 1997.

    Google Scholar 

  32. Y. Kuniyoshi and A. Nagakubo. Humanoid As a Research Vehicle Into Flexible Complex Interaction. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’97), 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuniyoshi, Y., Rougeaux, S., Stasse, O., Cheng, G., Nagakubo, A. (2000). A Humanoid Vision System for Versatile Interaction. In: Lee, SW., Bülthoff, H.H., Poggio, T. (eds) Biologically Motivated Computer Vision. BMCV 2000. Lecture Notes in Computer Science, vol 1811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45482-9_52

Download citation

  • DOI: https://doi.org/10.1007/3-540-45482-9_52

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67560-0

  • Online ISBN: 978-3-540-45482-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics