Skip to main content

A Comparison of Association Rule Discovery and Bayesian Network Causal Inference Algorithms to Discover Relationships in Discrete Data

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1822))

Abstract

Association rules discovered through attribute-oriented induction are commonly used in data mining tools to express relationships between variables. However, causal inference algorithms discover more concise relationships between variables, namely, relations of direct cause. These algorithms produce regressive structured equation models for continuous linear data and Bayes networks for discrete data. This work compares the effectiveness of causal inference algorithms with association rule induction for discovering patterns in discrete data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Data Mining Research Group, School of Computing Science (1999). DBMiner E1.1 (Beta 1) User Manual. Simon Fraser University, Vancouver, British Columbia.

    Google Scholar 

  2. Fayyad, U., Piatetsky-Shapiro G., & Smyth P. (1996, November). The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communications of the ACM, pp. 27–34.

    Google Scholar 

  3. Freedman, D., & Humphreys P. (1998). Are there Algorithms that Discover Causal Structure. University of California at Berkeley.

    Google Scholar 

  4. Han J., Chiang J., Chee, S., Chen, J., Cheng S., Gong, W., Kamber, M., Koperski K., Liu, G., Lu, Y., Sefanovic, N., Winstone, L., Xia, B., Zaiane, O., & Zhu, H. (1997, November). DBMiner: A System for Data Mining in Relational Databases and Data Warehouses. In Proceedings of CASCON 1997. CASCON’97. Toronto, Canada.

    Google Scholar 

  5. Humphreys P., & Freedman, D. (1996). The Grand Leap. British Journal of the Philosophy of Science, 47 (113–23).

    Article  Google Scholar 

  6. Pearl, J. Causal Diagrams for Empirical Research. (1995) Biometrika, 82:4, 669–P

    Article  MATH  MathSciNet  Google Scholar 

  7. Pearl J., & Verma, T. (1991). A theory of inferred causation. Allen J.A., Fikes R. & Sandewall E (Eds.). Principles of Knowledge Representation and Reasoning: Proceedings of the 2nd International Conference. San Mateo, CA.: Morgan Kaufmann.

    Google Scholar 

  8. Scheines R., Spirtes P., Glymour C., Meek C., &. (1994). Tetrad II Tools for Causal Modeling. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  9. Spirtes P., Glymour C., & Scheines R. (1993). Causation, Prediction and Search. Lecture Notes in Statistics, vol. 81. New York: Springer-Verlag.

    MATH  Google Scholar 

  10. Spirtes P., & Scheines R. (1997). Reply to Freedman. In McKim V. & Turner S. (Eds.), Causality in Crisis (pp. 163–176). University of Notre Dame Press.

    Google Scholar 

  11. Westphal C, & Blaxton T. (1998). Data Mining Solutions. New York: John Wiley & Sons, Inc.

    Google Scholar 

  12. Zweig, G. and Russell, S. (1998) Speech Recognition with Dynamic Bayesian Networks. In Proceedings of AAAI-98, Madison, Wisconsin (pp 173–180)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bowes, J., Neufeld, E., Greer, J.E., Cooke, J. (2000). A Comparison of Association Rule Discovery and Bayesian Network Causal Inference Algorithms to Discover Relationships in Discrete Data. In: Hamilton, H.J. (eds) Advances in Artificial Intelligence. Canadian AI 2000. Lecture Notes in Computer Science(), vol 1822. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45486-1_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-45486-1_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67557-0

  • Online ISBN: 978-3-540-45486-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics