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Abstract. Video traffic compressed with variable bit rate coding scheme
is known to possess high variations and multiple time scale characteris-
tics. This property makes parsimonious video modeling a difficult task.
A possible way of describing this traffic is via self-similar models, which
also produce high variations on many time scales. However, these are
general traffic models and do not represent many important characteris-
tics of video. In this paper we show that video traffic has well-separable
time scales. Based on this result, a new model is presented, which is
capable of capturing the main properties of VBR video. The concept is
scene-oriented, while a larger time scale - called epoch - is introduced.
The main contribution of this paper is that the presence of multiple time
scales seem to be the real reason for the slowly decaying autocorrelation
function rather than heavy tailed level durations. Finally, the application
of the model is shortly discussed for dimensioning, admission control and
simulation purposes.

1 Introduction

The emerging multi-service architectures speed up the widespread adoption of
video applications in communication networks. Streaming video – in which view-
ers can begin watching content almost as soon as it starts downloading – is now
developing as a mainstream technology on the Internet. Wireless networks like
GPRS and UMTS will offer mobile users a convenient way to access these ser-
vices. However, the efficient support of high quality video services over packet
switched wireline or wireless channels is still a challenging task.
Modern effective coding standards use hybrid coding (e.g., MPEG, H.263,

H.263+) which comprises lossy intraframe coding and motion compensation to
exploit both spatial and temporal redundancy. In this paper MPEG-4 traces
are analyzed, since - due to the similarity of the coders - the results can be
generalized straightforward to MPEG-2 or H.263 traffic and they also serve as a
basis for understanding the bandwidth requirement of compressed video streams.
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There are different coding schemes that can be used depending on the actual
application (e.g., constant bit rate, variable bit rate, adaptive rate coding). This
paper is concerned with the variable bit rate (VBR) scheme, which provides
the best compression for given image quality. Although, from the point of view
of performance analysis, it is not easily tractable due to its high variability on
many time scales.

There are a number of different approaches that can be found in the liter-
ature. In the discrete autoregressive DAR(1) model [10] a finite-state Markov
chain is used to generate the sequence of the number of bits associated with
each video frame. This process stays at a constant level for geometrically dis-
tributed period, then steps onto another level independently of the current state.
The transition matrix of this Markov chain is composed of identical rows equal
to the marginal frame size distribution. The use Markov Modulated Process
[17] is similar to the previous approach, but it is extended by state-dependent
transitions and varying bit rate during the scenes. Clearly, this model requires
quantized average scene bit rates. In addition, the number of quantization levels
can not be large because all of the elements of the transition matrix must be
estimated from the trace. Another type of models [6], [11] capture the marginals
and the autocorrelation function (ACF) of a video trace. In this case, video
traffic is modeled as a self-similar process. The frame (or group of pictures)
size distribution can be arbitrary (in [6] it is a mixture of Gamma and Pareto
distributions), while the correlation structure is caught through the Hurst pa-
rameter. Thus, beside the marginal distribution, only the Hurst parameter needs
to be estimated, which determines the decay rate of the autocorrelation func-
tion. The shifting level process (SLP) (also called space-time renewal process) is
a very simple model [5], [16], [7], [8]; it consists of constant bit rate levels, which
may represent the scenes. Both the mean and the length of these levels are
independent, identically distributed random variables. By choosing the length
distribution appropriately, any ACF structure can be captured [12]. Thus, the
process is completely described by two distributions. In [14] the compound ACF
behaviour is captured by a special family of functions, the stretched exponen-
tial, instead of polynomial (long range dependence) or exponential (Markovian).
The video model with such a correlation structure is based on M/G/∞ input
process, where the actual bit rate is proportional to the number of customers
being in the M/G/∞ system. By varying G many forms of time dependence can
be displayed, while it affects the bit rate marginal distribution only through its
mean. The marginal will be Poisson distribution, which is further transformed
into the appropriate frame size distribution.

The temporal behaviour of a VBR coded video has always been the most
debated question in the literature. Its bandwidth requirement is often regarded
as a long range dependent (LRD) process because of its slowly decaying auto-
correlation function. Thus, traditional short range dependent Markovian models
may fail to predict QoS parameters in certain circumstances [6]. In [18] the use
of LRD models is questioned in the context of realistic traffic engineering, i.e.,
using short network buffers.
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A simple Markovian model is indeed able to capture only one time scale.
The scene level characteristics of video is a well known property, which also has
an obvious physical meaning (i.e., scene cuts in a movie). However, the Markov
chain driven scene levels are still not descriptive enough for the whole video
trace. Therefore, self-similar models are used, which are able to capture infinite
number of time-scales. In that model the marginals and autocorrelation functions
are properly matched to the video trace. This approach is not necessarily effective
due to the following reasons:

– there is no physical meaning of the parameters and the model provides no
support about how to change them for different video traces and coding
standards;

– without the actual trace there is no way of estimating the parameters;
– very different video traces may have similar models;
– when estimating the ACF the traces were assumed to be stationary which
may not be true [15];

– second order statistics may be irrelevant from the queueing point of view
[12,2].

In the light of these criteria, we propose a model in which the time scales of VBR
video are explicitly represented, having a physical meaning for each of them. The
model is scene-oriented, but a larger time scale – called epoch – is introduced.
This result suggests that the large tail of the ACF is not necessarily due to the
heavy tailed level durations (e.g. scenes), but seems to be the sign of large time
scale level shifts.
The paper is organized as follows. In Section 2 the structure of the examined

MPEG video traffic is described. Section 3 contains the scene level analysis,
while in Section 4 the epoch concept is introduced and validated. In Section 5
we look at three application areas of this model, i.e., dimensioning, admission
control and simulations. Section 6 concludes the paper.

2 MPEG Video Structure

The modeling approach in this paper is intended to describe the common prop-
erties of all of the widely used hybrid coding standards, rather than a specific
coding standard. Hybrid coding, like MPEG or H.263, comprises lossy intraframe
coding and motion compensation to exploit both spatial and temporal redun-
dancy. The subject of the actual investigation is a set of VBR MPEG-4 traces
taken from [4]. Similar results were obtained for the traces of Rose [17].
A standard MPEG encoder generates three types of compressed frames. I-

frames are compressed using intra frame information only. P-frames are coded
similarly to I-frames but with the addition of motion compensation with respect
to the previous I- or P-frame. B-frames are similar to P-frames except that
the prediction is bidirectional. Typically I-frames are the largest followed by P-
frames, while B-frames require the lowest bandwidth. After coding, the frames
are arranged in a deterministic order, which is called group of pictures (GOP,
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e.g., ’IBBPBBPBBPBB’). The GOP pattern is not specified by the standard and
coders may use different patterns for subsequent GOPs. However, since many
sequences are being coded with regular GOP patterns (often to simplify the
codec design), developing a traffic model for such sequences has its merits.
There are two main levels of modeling: frame level and GOP level. The

former attempts to catch the size of each frame, while the latter takes a GOP as
a whole and is not interested in the individual frame sizes. In order to eliminate
the deterministic alternation of frame types, this paper is concerned with the
GOP level, thus making the model independent of the MPEG coding scheme.
The model can then be further refined to frame level.

3 Scene Level Analysis

It has been observed by many authors (e.g., [10], [12]) that the fluctuation of
frame sizes exhibit different behaviour at different time scales. Within small lo-
cality, I-frames have relatively small fluctuation about some average level, which
itself varies at larger time scale. These level shifts are usually attributed to scene
changes [5]. The scene can be defined as a portion of video without sudden
changes in view. Such behaviour can be captured using a mean-nonstationary
time series or some kind of modulated process. These models are called scene-
based models. Incorporating the ’scenic’ component in the traffic model gives its
predictions a physical meaning.
A simple implementation of such a model is the Shifting Level Process (SLP),

which consists of constant bit rate levels. The bit rate Yi and the duration Ti

of these levels are independent, identically distributed random variables. The
GOP size is clearly distributed according to Y . It has also been shown [12] that
the ACF ρk is exactly equal to the integrated tail of the renewal distribution
function FT . That is

ρk = 1− 1
m

k∑

u=0

(1− FT (u)),

where m is the mean scene length. One can see that, despite the simple structure
of the SLP, it provides an arbitrarily exact match of the first- and second-order
statistics. Thus, it is able to match subexponential ACF and to capture long
range dependence. The model can be extended to involve bit rate variations
during scenes. This modification has little impact on the tail characteristics of
the ACF. According to this reasoning the slow decay of the ACF is due to the
heavy tailed scene length distribution. However, our investigations show that the
scene durations follow Weibullian distribution with a mean of 2-3 seconds.
In order to obtain scene statistics one has to find scene boundaries in a trace.

To make the estimation of the distribution robust, two different methods were
used for this purpose. The first one was performed with change point detection
using the trace data. In this case, the well known intra-coded Star Wars movie
was used, since this coding scheme provides more reliable basis for scene change
detection. In the second case, the scene identification was performed on the basis
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Fig. 1. Q-Q plot for the two different types of scene length estimates and the scene
length distribution with a Weibullian approximation on a log-log scale

of a real MPEG source (the movie Matrix) instead of its trace. The frames were
decoded and the difference of the luminance bitmaps of every two consecutive
frames was stored. This is a visual identification and is supposed to be more
reliable than the frame size based method. Figure 1 shows that the character of
the two empirical distributions are surprisingly similar, despite that two different
movies were processed by two different methods. This validates the obtained
result. The tail of the scene length distribution can also be seen in Figure 1 with
its Weibullian approximation.
The fact that scene bit rates are not independent can be easily checked: by

shuffling the scenes in a video trace the time dependence structure is destroyed.
Grasse et al. [7] suggest that the Yi and Ti processes should be modeled by
fractionally differenced white noise passed through an ARMA(1,1) filter. This
solution, however, results in a general traffic model beyond the scene level, with
little physical meaning of the filter parameters.

4 Epoch Time Scale

After extensive statistical and graphical tests [1] concludes that video traffic
exhibits long range dependence, which is very important from the point of view of
queueing behaviour. When calculating the empirical autocorrelation function of
several traces, one may see that the tail behaviour is really far from exponential.

Figure 2 shows the empirical ACF of the Star Wars trace. It can be seen [6]
that the initial part of the curve can be accurately matched to an exponentially
decaying function, but only up to 5-10 sec lag. Beyond that it decreases slower
than exponentially, up to c.a. 40 sec lag. It then adopts a quite erratic behaviour
decaying toward zero but extremely slowly. This composite shape of the ACF
(i.e., exponential start and slow decay later) is a property of many other video
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Fig. 2. Empirical ACF of the Star Wars trace (intra frame coded)

traces, as well, suggesting the property of long range dependence. This long time
dependency is often explained by the heavy tail of scene lengths (e.g., Pareto
distribution). Although our statistical analysis reinforces the subexponentiality
of scene length duration, it does not seem the main cause of the large tail of the
autocorrelation function, since the tail of the ACF is not simply slowly decaying
but remains high (∼0.4) for large time lags, beyond the scene time scale.
In our concept the complex behaviour of the ACF is due to the presence of

multiple time scales instead of heavy tailed level durations. Analyzing the VBR
video traces one can observe that the level shifts, which are the characteristics
of the scenic behaviour, appear on a larger time scale, as well (Figure 3). These
long term level shifts constitute the modulating process of the scene level process.
These larger time scale levels – we called them epochs – are introduced, which
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Fig. 3. Level shifts on large time scale in the GOP trace of the movie MrBean
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Fig. 4. The ACF of the epoch, scene, GOP levels and the ACF of the trace (GOP
numbers, up to 150 sec)

serve as an explanation for the large tail of the ACF. Therefore, our model has
3 level characteristics (the index i refers to the GOP number):

– GOP size variation during a scene Ni;
– level shifts due to scene changes Si;
– level shifts due to epochs (a group of scenes) Ei.

Si and Ni are zero-mean processes. The GOP trace Ti is then simply the sum
of the three level processes: Ti = Ei + Si + Ni. Note that this concept con-
tains no specific information about the size or duration distributions, or about
the correlation structure of the individual level processes. Moreover, long range
dependency is not a requirement to produce the desired ACF function.
The hypothesis that Ni, Si and Ei are independent is not completely true,

but it proved to be a reasonable modeling assumption. The weighted average
of their ACFs gives the ACF of the whole trace, as can be seen in Figure 4.
This structure explains the quickly decaying start (due to Si and Ni) and the
slowly decaying tail (due to Ei), which has also been observed by several authors
[6]. The stochastic behaviour beyond some time lag may be the result of non-
stationarity, i.e., the epoch process varies too slowly to be evaluated from a
”short” 1 hour trace.
The concept of defining epochs in a movie has some practical rationale, since

consecutive scenes may be filmed in a similar environment and background.
Thus, this modeling approach is based on the real traffic behaviour, and it is
probably easier to generalize to other coding schemes. On the other hand, level
shifts on the large time scale mean sudden jumps in bandwidth requirement
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Fig. 5. The ACF of a ”stationary” soccer video

instead of slow changes. This can be a significant property in adaptive envi-
ronments, like, e.g., TCP background traffic, WCDMA or measurement based
admission control. Finally, the three-level model is supported by the fact that
movie traces always possess large ACF tail (up to even 400 sec lag), while those
TV broadcasts that contain ”stationary” environment, like tennis or football,
have significant tail only up to ∼20 sec lag, as can be seen in Figure 5. This
phenomenon indicates that the epoch time scale in this video type is missing.
This means that the distribution of the epoch mean is already meaningful and
can be used as a video traffic descriptor. (One can also see that the negative
correlation values of Figure 4 have also disappeared in Figure 5, since these were
the result of making empirical averages for the level processes.)
The next step is characterizing the three level processes. As mentioned above,

the marginal distribution of the epoch level Ei is the main descriptor of a VBR
video. On the other hand, the temporal behaviour of Ei is of no importance
at all in most of the applications. In particular, it is not interesting from the
queueing point of view, since this time scale is too large to be smoothed in a
buffer of reasonable size [9].
The scene level process Si can already be smoothed in case of streaming video

applications (e.g., video on demand or Internet streaming applications), where
a delay of 10-20 sec is allowed. We have not developed a parsimonious model for
this process yet, but a short example shows that despite the Weibullian scene
length distribution, a Markovian model may be an appropriate description. The
process Si is quantized to 50 levels and a 50 state Markov chain is fitted to Si

(note that it is not for modeling purpose, only for demonstration). The queue
tail distribution of the original trace Si and a randomly generated trace S∗

i is
illustrated in Figure 6 for different service rates on logarithmic scale.
The GOP level process Ni is similar to Si but appears on a smaller time

scale. It should be accounted for in case of low-delay video applications.
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5 Applications

Dimensioning for streaming video. In this application the GOP time scale
process Ni is not necessary to appear in the model, since its average is approxi-
mately zero on 4-5 sec interval, while the smoothing buffer is typically larger. The
epoch process Ei affects the bandwidth requirement only through its marginal
distribution. After some analysis of the 20 available video traces the Gamma
distribution seems to be a good conservative approximation (see Figure 7). For
the estimation of the traffic description parameters a large video database should
be used. The required capacity can be calculated separately for the epoch level
processes (with bufferless multiplexing) and the scene level processes (effective
bandwidth with a given buffer [13]).

Admission control for streaming video. Based on the above reasoning
a robust admission control method can be constructed [3]. While a simple mea-
surement based admission control (MBAC) is not a reliable method for VBR
video traffic due to its long term variations, a compound, measurement based
and parametric admission control is already suitable. While the bursts coming
from the scene time scale (and GOP) bit rate variations can be buffered and
thus, its temporal behaviour must be accounted for by the measurement based
scheme, the large time scale variation affects the bandwidth requirement only
through its marginal distribution. The two time scales can be separated in real-
time by applying moving average. Thus, the algorithm is measurement based on
small time scales and parametric on the large time scale.

Video traffic simulations.With the proposed model it is possible to gener-
ate video traces for simulations that have similar characteristics to the real video
traffic. The main impact of the model on packet level simulations is that the large
time scale variation actually appears as level shifts. This causes a sudden jump
in the bandwidth requirement occasionally. These level jumps may have serious
effects on the performance of adaptive background applications, like TCP or
adaptive video. In these applications, besides the bandwidth oscillation, it also
causes bursty packet losses.
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6 Conclusion

VBR video traffic is known for its high correlation on large time scales. In this
paper we argued for multiple time scale video models instead of long range de-
pendent models. We described a modeling approach which explicitly captures
the time scales of video traffic. The model is scene-oriented, but large time scale
level shifts are introduced, called epochs. This time scale process has a physi-
cal meaning and can be used for parsimonious characterization of video traffic.
The model also explains the compound structure of a typical video traffic auto-
correlation function without the use of long range dependent models. Although
the model has a composite structure, certain time scales are irrelevant in the
performance analysis, thus, it remains parsimonious for a given application. In
particular, the time scales beyond the epoch levels and their temporal behaviour
is of practically no importance. Examples were also shown that the model can
be used in a wide range of applications.
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