
Middleware for Reactive Components:
An Integrated Use of Context, Roles, and Event

Based Coordination

Andry Rakotonirainy1, Jaga Indulska2, Seng Wai Loke3, and
Arkady Zaslavsky4

1 CRC for Distributed Systems Technology
Level 7, General Purpose, University of Queensland 4072, Australia

andry@dstc.edu.au
2 School of Computer Science and Electrical Engineering

The University of Queensland 4072, Australia
jaga@csee.uq.edu.au

3 School of Computer Science and Information Technology
RMIT University, GPO Box 2476V, Melbourne VIC 3001, Australia

swloke@cs.rmit.edu.au
4 School of Computer Science and Software Engineering
Monash University, Caulfield VIC 3145, Australia

A.Zaslavsky@csse.monash.edu.au

Abstract. The proliferation of mobile devices and new software creates
a need for computing environments that are able to react to environ-
mental (context) changes. To date insufficient attention has been paid to
the issues of defining an integrated component-based environment which
is able to describe complex computational context and handle different
types of adaptation for a variety of new and existing pervasive enterprise
applications. In this paper a run-time environment for pervasive enter-
prise systems is proposed. The associated architecture uses a component
based modelling paradigm, and is held together by an event-based mech-
anism which provides significant flexibility in dynamic system configura-
tion and adaptation. The approach used to describe and manage context
information captures descriptions of complex user, device and applica-
tion context including enterprise roles and role policies. In addition, the
coordination language used to coordinate components of the architec-
ture that manage context, adaptation and policy provides the flexibility
needed in pervasive computing applications supporting dynamic recon-
figuration and a variety of communication paradigms. 1

1 Introduction

Pervasive (ubiquitous) environments are characterised by an immense scale of
heterogeneous and ubiquitous devices which utilise heterogeneous networks and
1 The work reported in this paper has been funded in part by the Co-operative Re-
search Centre Program through the Department of Industry, Science and Tourism
of the Commonwealth Government of Australia

R. Guerraoui (Ed.): Middleware 2001, LNCS 2218, pp. 77–98, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

78 A. Rakotonirainy et al.

computing environments that communities use across a variety of tasks and lo-
cations. The pervasive environment is an environment in which components, in
spite of this heterogeneity, can react to environmental changes caused by mobil-
ity of users and/or devices by adapting their behaviour, and can be reconfigured
(added or removed dynamically). Pervasive environments need to offer a variety
of services to a diverse spectrum of entities. Also, services can appear or disap-
pear, run-time environments can change, failures may increase, and user roles
and objectives may evolve.

Adaptability and reactivity is the key to pervasive computing. Pervasive en-
vironments require the definition of a generic architecture or toolkit for building
and executing reactive applications. Reactive behaviours are triggered by events;
in many cases the trigger is not a single event, but a possibly complex composi-
tion of events. These behaviours exist in many domains and are very useful for
e-business applications (stock market, sales alerts, etc.) There are already exist-
ing research and industry approaches which address many adaptation problems.

However, no integrated architecture that is open, flexible and evolvable yet
exists. This situation makes it impossible to test, within a single architectural
framework, concepts such as (i) rich context description, (ii) generic approach to
decisions about adaptability methods, (iii) dynamic definition of communication
paradigms, (iv) dynamic reconfiguration of the architectural components, (v) in-
corporation of enterprise aspects like roles of participants and policies governing
roles.

Most existing pervasive architectures have been influenced by a specific type
of application, or by the type of underlying technology, thereby resulting in a lack
of generality (see Section 2). In order to avoid building a monolithic architecture
we aim to provide generality, and to design an architecture that separates clearly
the computation aspect from the coordination aspect. The computation aspect
is in turn separated into dedicated services modelled as context, adaptation
and policy managers. These aspects are often merged into a monolithic frame-
work preventing flexibility and extensibility. Architecture Description Languages
(ADL) have been proposed as modelling notations to support architecture-based
development [19]. Their ability to scale to large systems and pervasive environ-
ments are yet to be proven [23]. To coordinate events of autonomous components
without re-writing these components, we defined a rule and event based coor-
dination script, which has a high-level declarative meaning in terms of overall
structure of the architecture to specify cross-component interactions.

In this paper we describe the m3 architecture and its Run-Time Environ-
ment (m3-RTE). The basic concepts of the framework were presented in [14].
This paper presents extensions and detailed applications using the proposed ar-
chitecture. The structure of this paper is as follows. Section 2 provides both
brief characteristics of related work and their evaluation. Section 3 gives a high
level description of m3-RTE. Section 4 describes the design requirements and
modelling concepts used in the proposed architecture. Section 5 characterises
the architecture and describes the functionality and interfaces of its main com-
ponents. It also describes interactions between components. Section 6 discusses

Middleware for Reactive Components 79

several issues related to the implementation of the architecture (m3-RTE Run
Time Environment) including coordination of events, descriptions of the current
status of the architecture prototype and its main components. Section 7 shows
examples of applications using the services of m3-RTE. Section 8 discusses the
benefits of m3-RTE. Section 9 concludes the paper and mention future works.

2 Related Work

Sun[tm] Open Net Environment [26] (Sun ONE) provides the means for de-
riving context: information about a person’s identity, role, and location, about
security, privacy, and permissions - all the things that make services smart. In
Sumatra [1], adaptation refers to resource awareness, ability to react and privi-
lege to use resources. Sumatra provides resource-aware mobile code that places
computation and data in response to changes in the environment. Rover [17]
combines architecture and language to ensure reliable operations and is similar
to Sumatra in the sense that it allows loading of an object in the client to re-
duce traffic. It also offers non-blocking RPC for disconnected clients. Bayou [8]
takes a different adaptability approach by exposing potentially stale data to
the application when the network bandwidth is poor or down. Bayou is similar
to Coda [24] in that respect. Coda is a distributed file system that supports
disconnected operation for mobile computing. Mobiware [3] and Odyssey [20]
are more focused on adaptability measurement. Mobiware defines an adaptation
technique based on a utility-fair curve. This micro-economic based method al-
lows the system to dynamically adapt on the QoS (Quality of Service) variation
of the data link layer network. Odyssey’s approach to adaptation is best char-
acterised as application-aware adaptation. The agility to adapt is defined as a
key attribute to adaptive systems. It is based on control system theory where
output measurements are observed from the input reference waveform variation.
TSpaces [15] provides group communication services, database services, URL-
based file transfer services, and event notification services. It is a networked
middleware for ubiquitous computing. TSpaces can be succinctly described as a
network communication buffer with database capabilities. JavaSpaces Technol-
ogy [11] is similar to TSpaces and is a simple unified mechanism for dynamic
communication, coordination, and sharing of objects between Java technology-
based network resources like clients and servers. In a distributed application,
JavaSpaces technology acts as a virtual space between providers and requesters
of network resources or objects. PIMA, Aura, Limbo and Ensemble address is-
sues about architecture as m3 does. Limbo [7] and Ensemble [22] are concerned
with the mobile architecture and the programming model. Limbo offers an asyn-
chronous programming model (tuple space) and defines an architecture for re-
porting and propagating QoS information that might be related to the system.
Adaptability is achieved by filtering agents. Ensemble’s architecture consists of
a set of protocol stacks which are micro-protocol modules. Modules are stacked
and re-stacked in a variety of ways to meet application demands. Adaptation is
done transparently to the application. The lowest layer tries to adapt first. If it

80 A. Rakotonirainy et al.

can’t, then it passes the notification to the layer above. This repeats until, even-
tually, the application itself has to reconfigure. PIMA [2] is a framework that
focuses on providing a device-independent model for pervasive applications that
facilitates application design and deployment. It provides functionalities such
as an application adaptation enabler, and dynamic application apportioning to
services. Aura [28] is a task-driven framework that helps the user to gather infor-
mation about available services, selecting suitable services to carry out tasks and
binding them together. A Service Coordination Protocol controls adaptability
mechanisms required when the environment changes. Open-ORB [4] and dy-
namicTao [18] use reflection mechanisms to address dynamic configuration and
adaptation of components. The two approaches make use of a reflective CORBA
ORB that gives program access to meta information that allows the program
to inspect, evaluate and alter the current configuration of components. In [10]
is presented a set of requirements for future mobile middleware which support
coordinated action between multiple adaptations triggered by multiple contexts.

As can be seen, the above work addresses specific types of adaptability for
particular middleware and hence, caters for only specific kinds of contextual
information. The cited works propose adaptation to the quality of service pro-
vided by the network or the Operating System and do not provide an open,
evolvable architecture enabling the use of a broad range of concepts related
to adaptation of enterprise applications. Furthermore, dynamic coordination of
heterogeneous components, dynamic definition of communication paradigms and
context awareness are not addressed in the existing solutions.

3 High Level Description of the m3 Architecture

In this section we first present a high level view of the m3-RTE (Run Time En-
vironment). The m3-RTE can be considered as an ORB (OMG Object Request
Broker) or an agent that adapts the delivery of information (protocol and con-
tent) with the use of context (user profile, server profile, etc), adaptation and
policy services (see Figure 1). The m3-RTE has a programming interface that
allows the system programmer to specify relevant contexts of interest, adap-
tation rules, policy rules and coordination within m3-RTE. Clients can access
servers transparently. Servers are wrapped by m3-RTE so that all in/out-coming
messages are filtered and coordinated by the m3-RTE coordination service.

Neither the user application nor the server do not need to know about the in-
ternal mechanism of m3-RTE: the adaptation of the request (protocol, content)
to be delivered to a particular application can be done transparently. A Ticker-
tape application is presented in Section 7 that demonstrates such an approach.
Tickertape messages are pushed to applications based on subscriptions. m3-RTE
was programmed to change dynamically the interaction protocol and the content
of information delivery based on context (e.g. device capability, MIME content)
and policy (e.g. level of security) without touching the client front end.

Middleware for Reactive Components 81

Adapted

+ other context
User profile

System Programmer
Interface

Distributed
m3 run−time environment

Application

Data Sources

Multimedia

Database
context

push pullDelivery/Interaction
Adapted interaction

User

Fig. 1. m3-RTE located between the front end and back end

4 m3 Design Requirements and Modelling Concepts

In m3-RTE, we seek a balance in providing a high level model of a bounded
pervasive environment (e.g., an enterprise) in terms of context, roles and events,
and supporting dynamic lower level behaviours - such as reactivity and changes
in configuration of components. More specifically, the design of the m3-RTE was
driven by the following requirements:

1. Enterprise focus: As enterprise applications are complex and their complex-
ity increases if they operate in pervasive environments. We need abstractions
that capture the purpose, scope and policies of the system in terms of be-
haviour expected of different roles within the system by other entities (roles)
within the enterprise. e.g the CEO is authorized to increase the salary of
Project Leaders.

2. Reactivity/proactivity: reactivity is an important design guideline of the m3
architecture: the architecture should allow easy programming of reactions
to context changes. The changing context of a component determines its
interactions with other components and the service it can offer. Proactivity
is the ability of an m3-RTE to foresee changes that might occur and prepare
for those. This ability is crucial for successful adaptation and is achieved
by generating sets of events to compensate for fluctuations in the system’s
behaviour and the surrounding environment. Patterns of behaviours and a
history of previous executions are used for proactivity support.

3. Open dynamic composition: the system must support inter-operation with
open components such as legacy applications or new components. New com-
ponents may exhibit new types of interactions which go beyond the currently
common but very static and asymmetric Remote Procedure Call (RPC).
Dynamic composition (plug and play) configuration and customisation of
services is essential in a pervasive environment as lack of resources to carry
out a task may require a partial/complete reconfiguration of services.

Requirement (2) is addressed by using the event notification concept (pub-
lish/subscribe) as a core building block of the m3 architecture. Requirement (1)
and (3) are addressed by integrating a policy manager inspired by RM-ODP
enterprise policy specification and RM-ODP modelling concepts into the m3 ar-
chitecture [16] . The three basic modelling concepts inspired by RM-ODP [16]

82 A. Rakotonirainy et al.

interface

ro
le

ev
en

ts

component

role = placeholder for interfaces
interface = event abstraction of component

component

in A
A fulfiling a role

Fig. 2. m3 architecture modelling concepts

are components, their roles and the events to which components can react. These
basic modelling concepts are illustrated in Figure 2.

– Event is an atomic modelling concept from which interaction protocols such
as message passing, RPC, streams and other communication paradigms can
be expressed. We assume that interactions between all components are event
based.

– Component is a core modelling concept. It is a software abstraction. In
object-oriented terminology, a component is a set of interacting objects (or
even a single object).

– Roles: m3 focuses on RM-ODP enterprise specifications which define the
purpose, scope and policies for a system in terms of roles played, activities
undertaken, and policy statements about the system [16]. An enterprise role
is an identifier for a behaviour (e.g. Director). A role is an abstraction and
decomposition mechanism. It focuses on the position and responsibilities of
a component within an overall system to carry out a task. An example of
the Director’s task is supervise subordinates.
A role cannot exist without a component. A role is a placeholder that can
be fulfilled by one or more interfaces. Roles provide abstraction required for
enterprise modelling.Roles can be added/removed dynamically during the
lifetime of a component.

5 m3 Architecture

The modelling concepts in Section 4 are used to define the m3 architecture. The
architecture is organised into three layers as shown in Figure 3:

– Coordination layer: a coordination manager that executes a coordination
script written in MEADL (Mobile Enterprise Architecture Description Lan-
guage)

– Dedicated manager layer consisting of three fundamental parts of pervasive
and reactive computing environments. They are the Context, Adaptation
and Policy managers.

Middleware for Reactive Components 83

– Distributed Service layer: services such as notification and security. This
layer also includes network protocols.

The following subsections describe the functionalities of these three layers. It also
gives examples of interaction within the m3 Run Time Environment (m3-RTE).

Application

Server
ERP

User

Distributed Services

ManagersDedicated

Coordination ManagerCoordination

Applications

role

and Network Protocols

Service

BluetoothJini

Context
Manager

Notification

Service

Security

TCP/IP

Discovery

Programmer
System

GSM

Service

Manager
Policy

Service

Location

Manager
Adaptation

interactions
event based

update

Coordinationparse,exec

MEAD

��

WAP

QoS

��

��

��

Monitoring

Transaction
Service

Replication
Service

component

specification

Fig. 3. Internal components of the m3 Architecture

5.1 Coordination Layer

The need for increased programmer productivity and rapid development for
dynamic changes within complex systems are the main motivations that led
to the development of coordination languages and models. Coordination-based
concepts such as Architecture Description Languages (ADL) provide a clean
separation between individual software components and their interaction within
the overall software organisation. This separation makes large applications more
tractable, more configurable, supports global analysis, and enhances reuse of
software components.

The coordination layer is the core of the m3 architecture. The coordination
focuses on concepts necessary to manage the implications of mobility and reac-
tivity for enterprise-wide activities. For example the coordination layer should

84 A. Rakotonirainy et al.

be able to re-configure itself if a policy manager and/or context manager is un-
reachable or cannot be instantiated in a small device. The coordination consists
of two parts (i) specifying with MEADL the interaction between enterprise roles
and (ii) executing MEADL scripts within a coordination manager.

Coordination specification with MEADL. MEADL specifies the coordi-
nation of events. It is a coordination script that separates the behaviour speci-
fication (functionalities) of components from the communication needed to co-
ordinate such behaviours. MEADL specifications provides means to configure
dynamically the interaction between components, to change dynamically the
communication paradigm and to provide session management.

We take a pragmatic (not formal description techniques) and minimalist
(simple) approach to specify coordination. The script offers two main advan-
tages: (i) interaction between components can be changed dynamically, and (ii)
coordinated components can be added or removed dynamically.

Events belong to roles, and therefore, MEADL specifies the coordination
of roles. Roles can be fulfilled by users, ERP(Enterprise Resource Planning)
servers, network protocols or dedicated managers. A role’s description is the
interface of tasks that a component can provide. A role’s duty is described in a
set of input/output events. The duty of roles is to perform a set of tasks. The
interface to tasks corresponds to the interface of components.

The m3 architecture is a reactive architecture and this is reflected in the use
of the reaction rule syntax on event as first class construct of MEADL.

on event Rj : Ei waits for the occurrence of a set of events Ei from a defined
set of roles Rj . The value of Ei parameters is checked with a WHERE clause. The
relevant context is also checked with in context or out context clauses.

Code 5.1 MEADL EBNF syntax
rule : "on" pexpr [guard] "{" actions "}"
pexpr : "event" role "(" [ident(","ident)*] | "(" pexpr ")"

| pexpr op pexpr
guard : "not"* ("in" | "out") "context" string
actions : [action(";"action)*]
role : ident ":" ident
op : "where" | "and" | "or" | "eq" | "neq"
action : ("call" | "emit") ident "(" [expr (","expr)*] ")"

The MEADL syntax is summarised in Code 5.1. An example of a MEADL
sentence is shown in Code 5.2. Code 5.2 specifies a rule that waits for the oc-
currence of event http:get(balance, account) from the role Director. If the
current context is secure and the balance is more than 10,000 then it emits a
new event featuring the new balance then calls a function foo.

Middleware for Reactive Components 85

Code 5.2 Example of MEADL specification
ON EVENT Director:http:get(balance, account)

WHERE (balance > 10,000)
IN CONTEXT ‘‘secure_environment’’

{
EMIT employee_chat_line(‘‘DSTC has’’,balance);
CALL foo(account, 23);

}

Coordination Manager. The coordination manager is an engine that executes
a MEADL script. MEADL scripts are transformed into XML [27]. Then, the co-
ordination manager coordinates the events based on the generated XML specifi-
cation. The use of XML is a provision for the future use of different coordination
mechanisms (e.g. workflow engine) and language independent coordination.

The coordination manager coordinates the other components by send-
ing/receiving events. To allow rules to affect other rules (a form of reflection)
and to allow dynamic change of reaction rules, the Coordination Manager offers
the following methods:

– Reaction-Id create-react-rule (spec) create a reaction rule
– void delete-react-rule(reaction-Id) delete a reaction rule
– void map (event, operations) : map an event to a set of operations
– void inhibit (reaction-Id): inhibit a reaction rule
– void reactivate(reaction-Id): reactivate an inhibited reaction rule

5.2 Dedicated Managers Layer

The middle layer of the architecture is composed of three dedicated managers
which provide the three major functionalities. We identified them as necessary
for modelling the enterprise pervasive environment (and thus, for building appli-
cations for such environments). The three managers are context, adaptation and
policy managers. The Context Manager (CM) provides awareness of the environ-
ment and feeds the Adaptation Manager (AM) with context information in order
to enable selection of an appropriate adaptation method. The Policy Manager
(PM) ensures that the overall goals of the roles involved are maintained despite
adaptation and that a change of roles is followed by appropriate adaptation.

The use of these managers is invisible outside the m3 architecture. They
are autonomous components with well defined interfaces that interact together
to provide the appropriate level of service to applications using the m3-RTE.
Only the coordination manager has an impact on the way the three dedicated
managers interact.

Context Manager (CM). Components may move to other environments or
some features of the current context may change (memory, disk space, user
preference etc). Context consists of

86 A. Rakotonirainy et al.

“any information that can be used to characterise the situation of an
entity, where an entity can be a person, place, physical, or computational
object.” [9]

The aim of the CM is to provide context awareness. The design of a context
aware system must contain at least three separate but complementary steps.
They are:

1. Context description: The syntactical representation of semantic-free infor-
mation relevant to an entity.

2. Context sensing: Related to gathering contextual information specified in
the context description.

3. Context interpretation: Related to understanding perceived information.

The current version of CM focuses on bullet point 3. The CM is responsible
for gathering context information and making it available to the other entities.
The CM enables consistent addition, deletion and modification of the context
(value, attribute and relationship between attributes) and the detection of con-
text changes.

We identified two types of context called local and community context. A
component can be aware of its own local context (e.g. the characteristics of the
device on which it is running, location, role fulfilled by the user), or the contexts
of all the components or roles (on the same device or on other devices) it is
interacting with. We call the combination of the contexts of all the interacting
applications community context. A community being the composition of compo-
nents formed to meet an objective [16]. Awareness of local or community context
(or changes in local or community context) can itself be local (i.e., only one ap-
plication has the awareness) which we call local awareness, or community (i.e.,
all the applications are aware of the context change at roughly the same time
either synchronously or asynchronously) which we call community awareness.

The CM represents context as value/attribute pairs using RDF (Resource
Description Framework) graphs. RDF instances assign values to instances. It is
these instances that describe context. RDF enables the definition of schemata
which describe the gathered context as well as allowing the use of relation-
ship operators between attributes (e.g cardinality) or constraint properties. A
community context is modelled as relationship between different contexts (e.g
relationship between context of different roles). The use of RDF enables us to
use the work of the W3C CC/PP [5] WG which is defining a vocabulary for de-
scribing device capabilities, as well as protocols to transmit these device profiles
from the client. The interfaces provided by our context manager are:

– ContextValue getContext (Id,Path,Callback): Get the context associ-
ated with Id

– void addContextListener(Path, Callback): Register to be notified when
context changes take place. Path restricts the scope of interest.

– ContextAttr listContextAttr (Id,Path): Get the context vocabulary
associated with context Id.

Middleware for Reactive Components 87

– boolean ExistsContextAttr(Id,Path): Checks if the attribute pointed to
by Path exist in context Id

– boolean incontext(component, ctx) Checks if a component is within a
context

– boolean outcontext(component, ctx) Checks if a component is outside
a context

Adaptation Manager (AM). The AM enables the m3-RTE to react to
changes context. The AM makes a decision about adaptation if context changes
and installs/invokes an appropriate adaptability method. The AM is able to
incorporate various types of adaptation.

Adaptation in response to context changes can be either local (i.e. only one
application adapts independently from the others) or community (i.e. all the
applications adapt together in some coordinated manner). We call these two
forms of adaptation local adaptation and community adaptation respectively.
These six dimensions are summarized below.

local community
context local context community context

context-awareness local awareness community awareness
adaptation local adaptation community adaptation

Most work to date has focused on local adaptation of an application in re-
sponse to local awareness of local context [10]. For instance, there is not much
work on other aspects such as local adaptation in response to local awareness of
community context (i.e., an application adapts according to its knowledge of the
contexts of the other applications on other computers it is interacting with. Our
approach to tackle community adaptation is to specify dependencies (chain) of
execution between adaptation rules. At this stage our dependency is sequential
(A then B) but we plan to have concurrent triggering of adaptation rules. A
dependency is modelled as a graph where nodes are adaptation rules. The AM
prevents the formation of cycles in the graph as it represents a ping-pong effect.

The AM specification is based on Event Condition Action (ECA) rules.
Event is an event that might trigger Action. Conditions are conditions related
to the event. Events are often generated by the context manager. Action is a
reference to an adaptation action. Such rules support multimedia (continuous)
and operational (discrete) adaptation and decouple the rules from the actual
implementation of the adaptation. It also supports the specification of applica-
tion aware adaptation [20] and application transparent adaptation [24,3] by
respectively giving the control and implementation of the (A)ction of an ECA
rule to the application or to the m3-RTE (see Section 7.1).

The Adaptation Manager provides the following interfaces:

– Boolean AddECARule(ECARule r): Adds an adaptation rule. The rule r is
added to the Adaptability Manager.

– Boolean RemoveECARule(ECARuleID rid): Removes an adaptation rule.

88 A. Rakotonirainy et al.

– ECARuleIDSet FindECARules(Criteria c): Retrieves an adaptation rule.
A criterion c (e.g. keywords to search in rule descriptions or event descrip-
tions) is used to search for ECA rules. The set of ECARuleIDs whose criteria
match c is returned. This set could be empty if there are no rules found.

– Result Adapt(Event e, Parameter p): Invokes the Adaptability Manager
which will make an adaptation choice.

– ECARuleIDSet findECARules (Event e): This function queries the rules
on which an event e can be possibly executed. The function returns a set of
ECARuleID, which can be used to select appropriate rules for execution.

– Boolean Depend(ECARule a, ECArule b, seq | conc) create a depen-
dency between the execution of the two rules. The Dependency can be par-
allel or sequential. Return false if a cycle of dependency is detected. A cycle
might generate an infinite loop.

– result ap-aware(condition, function) call function each time condition
is true, this function is mapped to AddECARule.

Policy Manager (PM). The Reference Model for Open Distributed Process-
ing (RM-ODP) Enterprise Language [16] comprises concepts, rules and struc-
tures for the specification of a community, where a community comprises objects
(human, software, or combinations thereof) formed to meet an objective. The
Enterprise Language focuses on the purpose, scope and policies of the commu-
nity, where an enterprise policy is a set of rules with a particular purpose related
to the community’s purpose. We see such an approach as providing useful con-
cepts for high-level modelling of a distributed system in general and pervasive
systems in particular. The goals of roles can change due to a lack of resources
required to achieve a task, for example. This implies that policies can be altered
and changed dynamically depending on the context. The policy manager ensures
that policy specification described as Obligation, Prohibition and Permission as-
sociated with enterprise roles are respected in pervasive environments. An exam-
ple of policy specification is Prohibited (Role, Community, Action, Time).
It specifies that a Role in a Community is Prohibited to do Action during Time.

The policy manager enables consistent addition, deletion and modification of
policies. The Policy Manager is also responsible for maintaining consistency and
resolving conflicts between roles objectives. (e.g. a role cannot be Authorised
and Prohibited to do an action at the same time.). It also prioritises adaptation
rules and context of interest based on objectives.

The Policy Manager provides the following services:

– Boolean CheckPolicy(CommunityID, Roles,URI): Check policy
– Boolean AddPolicy(CommunityID, Roles,URI):Add policy rules
– Boolean RemovePolicy(CommunityID, Roles,URI):Remove policy rules
– PolicyRuleIDSet RetrievePolicy(CommunityID, Roles,URI,

criteria): Retrieve policy rules based on the criteria.

Middleware for Reactive Components 89

5.3 Service Layer

A dynamic and open environment is characterised by the frequent appearance of
new services and network protocols. A unified mechanism is required to access
services and network protocols. This layer wraps services and network proto-
cols to fit into m3 modelling requirements. The wrapping allows upper layers
to interact with the service layer using the event-based paradigm. This layer
provides:

– at least the notification and discovery services. All the services fulfill a role,
accessed as components using event notification service. The discovery ser-
vice communicates via the notification service to the rest of the m3-RTE.

– a universal interface to the upper layers that enables the use of commu-
nication protocols such as SMTP, HTTP, TCP/IP or security protocols
transparently. The protocol independent interface is similar to the Linda
tuple space model [15,11]. It has generic interfaces in(from,data,attr)
and out(to,data,attr) to communicate with components.

5.4 Interactions between Components

All components of the m3-RTE have to register to a service discovery server as
illustrated in Figure 4. Components use a lookup service operation to get the
reference of a registered service and interact with it. The reference is used to
join the service. The join request will generate a unique channel ID in which
peers will interact. The in/out operations are used to exchange data.

Multicast register (announcement)

broadcast lookup

registered ref

join(ref)

Event coordination

Coordination
Manager

Service Discovery Dedicated Managers
or Distributed services/ network protocols

Fig. 4. m3-RTE initialisation

The discovery service registers only active tasks (services). A JINI like lease
mechanism is used to achieve this.

Once all the components are initialised and registered, the m3-RTE can re-
ceive calls from an application. Figure 5 illustrates an example of a m3-RTE
processing of an http(GET(URL)) request from an application. Note that the
coordination manager was programmed as illustrated which is not a mandatory

90 A. Rakotonirainy et al.

interaction (e.g we can change the coordination script and avoid using the pol-
icy manager). The Coordinator Manager receives the request and forwards it to
the PM to check authorisations. If authorisations are granted then the request
is sent to the AM. In this script, the AM is constantly updated by the CM
about the context of the application. The AM selects an adaptation rule based
on context and the adaptation action is executed. The reply is sent directly to
the coordination manager which forwards it to the application.

Policy
Manager

Coordination
Manager

Adaptation
Manager

Context
Manager

Adaptation
action

(e.g transcoder)

exec(ECArules)

addContextListner

Adapt(Role:http(GET(URL)))

findECArules

CheckPolicy(http:GET(URL))Role:http(GET(URL))

results

Fig. 5. Interaction between m3-RTE components

The python Code 7.1 relieves the user application (AP) from having to poll
the value of the bandwidth. The AM will do it on behalf of the AP. Note that
the code 7.1 does not prevent the AM, CM or PM to take actions provided
that it has been programmed by the system programmer. For example Applica-
tion transparent adaptation has to be programmed explicitly in MEADL which
coordinates the other three managers.

6 m3-RTE Implementation Issues

This section shows how the Coordination Manager uses the Elvin [6] notification
service to implement the execution of MEADL/XML scripts.

6.1 The Use of Elvin

Using point-to-point communication models such as RPC (JAVA-RMI) leads
to rather static and non-flexible applications. Event notification reflects the dy-
namic nature of mobile applications. Interaction components are symmetrically
decoupled. Such decoupling and content-based addressing features are the key
to the scalability of a mobile platform. Event notification is the building block
of the m3-RTE. The concept consists of sending a message to an intermediate
system to be forwarded to a set of recipients. The benefits are: reduced depen-
dencies between components and as a result greater flexibility. DSTC Elvin [6]

Middleware for Reactive Components 91

takes this simple concept and extends it to provide a routing service which is
dynamic, scalable, and applicable for a wide variety of communication needs.

Elvin is a notification/messaging service with a difference: rather than mes-
sages being directed by applications from one component to another (address
base), Elvin messages are routed to one or more locations, based entirely on
the content of each message. Elvin uses a client-server architecture for delivering
notifications. Clients establish sessions with an Elvin server process and are then
able to send notifications for delivery, or to register to receive notifications sent
by other components. Clients can act, anonymously, as both producers and con-
sumers of information within the same session. The Elvin subscription language
allows us to form complex regular expression.

Elvin is used to exchange events within the m3-RTE. MEADL expressions
are parsed and transformed into Elvin subscriptions using Python [21]. Elvin’s
data is encoded in W3C Simple Object Access Protocol (SOAP 1.1) [25]. Such
a choice provides for the use of different communication protocols in the future.

6.2 m3-RTE Prototype

The goal of the m3-RTE prototype is to create a test bed run-time environment
for our current and future concepts in pervasive computing. The prototype in-
cludes the following managers:

Coordination Manager.
Code 6.1 summarises how the MEADL specification 5.2 is transformed into an

XML specification. The XML expression in Code 6.1 is parsed with a Python [21]
XML parser. Python Elvin subscription expressions are then generated from the
XML parsing.

Context Manager. Currently, the context manager is able to manage device
descriptions and location information in an RDF (Resource Description Frame-
work) graph and location information for users and devices. This information
has to be gathered from a variety of physical sensors (location devices, e.g. GPS,
badges) and logical sensors (extracting/extrapolating location information from
operating systems and communication protocols). A location service has been
prototyped to gather location information from a variety of sensors, to process
this information and convert it to a common format before submitting it to the
CM. Our prototype comprises agents processing location data from several loca-
tion devices and from the Unix and Windows operating systems. Its architecture
allows easy incorporation of new sensor agents.

Adaptation Manager. Several adaptability methods have been prototyped
including insertion of a variety of filters, migration of objects from resource poor
sites to the static network and sending the result of the operation back to the
object’s client, restriction of an object interface (e.g. allowing access to a subset
of operations only) and adaptation of Web content [12].

Policy Manager. The Policy Manager extends context information by
adding descriptions of roles and policies associated with roles. Our Policy Man-
ager prototype is in an early stage of development and is currently able to manage

92 A. Rakotonirainy et al.

Code 6.1 XML representation of MEADL
<rule>

<trigger>
<relation rel="and">

<event name="http:get">
<argument ref="#action" />
<role="Director" />

</event>
<relation rel=>>

<argument ref="#action" />
<literal type="string">10,000</literal>

</relation>
</relation>

</trigger>
<guard>

<not>
<in context="secure_environment" />

</not>
</guard>
<reaction>

<call function="foo">
<argument ref="#action" />

</call>
</reaction>

</rule>

simple security oriented policies such as Permission and Prohibition. We use con-
cepts from MEADL to specify simple policy rules. The following example shows
an authorisation to the role Director to do an action if the Director belongs to
the DSTC community and the context of the role is in the Head Quarters.

Code 6.2 Example of Policy specification
ON EVENT Director:action

WHERE (Director.community = ’DSTC’)
IN CONTEXT ‘‘HQ’’

{
AUTHORIZE(action)

}

7 Examples of Applications Using m3-RTE

The first example demonstrates the ability of m3-RTE to support application
aware adaptation according to the terminology used in [20]. The second shows
an application “transparent” adaptation.

Middleware for Reactive Components 93

7.1 Application Aware Adaptation

This section shows an example of the use of interfaces of m3-RTE managers.
It shows code that implements the concept of application aware adaptation us-
ing m3-RTE in Python. AM and CM modules are imported and the ap-aware
(application aware) method of the AM is called with “Callback” as parameter,
Callback is a function that belongs to the application. The Callback function will
be called once the bandwidth is CM.bandwidth < 33. The ap-aware expression
is mapped directly onto an Elvin notification expression.

Code 7.1 Application aware adaptation

import AM /* import Adaptation Manager */
import CM /* import Context Manager context variable such as bandwith */
main() /* main of the client AP */
AM.ap-aware(CM.bandwith < 33 ,Callback)

def Callback()
print ‘‘AP callback adaptation function ’’

7.2 Tickertape

This application shows how the m3 architecture adapts the Tickertape user
interface rendering and the communication protocol according to the device
capabilities and user preferences provided by the CM.

Fig. 6. Unix X Windows

Tickertape is an existing application that gives visual scrolling display of
Elvin (event) traffic (see Fig 6). It is a tailorable window that can be used to
both produce and consume notifications as desired. It displays notifications that
the user subscribers to. In this prototyping, we use it for chat-style messages.
Scrolling messages can have a MIME attachment that the user can view with a
mouse click.

The demonstration consists of delivering the relevant Tickertape notifica-
tions with the appropriate communication protocol to four existing applications
installed in three devices (Palm, Solaris Ultra10, Nokia7110). Note that this

94 A. Rakotonirainy et al.

example is not just a transcoding exercise as communication protocols and com-
ponents involved in the delivering changes significantly for each adaptation.

We programmed the m3-RTE as follows. The CM has an abstract description
of the class of devices such as Palm, Solaris Ultra10, Nokia7110 that contains
their capabilities (e.g. WAP 1.0, WAP 1.2, touch-screen, Netscape). The AM
has the adaptation rules that select a required component to exchange Elvin
messages with the appropriate device (e.g. selection of proxies, WAP gateways).
The MEADL script executed by the Coordination Manager forwards the request
to the AM and is specified as follows:

Code 7.2 MEADL specification of Tickertape application
ON EVENT Project_leader:Ticker-connect(Elvin-server)

IN CONTEXT ‘‘Palm’’ or ‘‘Nokia7710’’ or ‘‘Solaris’’
{
EMIT Adapt(Project_leader:Ticker-connect(Elvin-server));

}

The list of subscribed channels for roles is known by the CM from the user
profile. The content of Elvin messages to be forwarded and the communication
protocols to be used are chosen by the AM. As a result Tickertape can be adapted
in four different ways. When a user uses:

– a Unix (Solaris Ultra 10) workstation, the user sees tickertape message as
in Figure 6. It uses X11. Messages and associated MIME type scroll in the
bar. The Elvin protocol uses TCP.

– a non WAP enabled palm device, the user sees Figure 7(a). The communi-
cation protocol is a phone line connected to a modem and then to the server
via HTTP. The Palm user interface cannot scroll messages. The associated
MIME types are not transfered. The user has to click the receive button to
check the latest update due to the absence of any push mechanism. A proxy
component is involved in the interaction. The proxy provides persistence
for Elvin by remaining subscribed on behalf of clients even while the client
is off-line. When clients reconnect, stored notifications are delivered by the
proxy to the clients.

– WAP 1.1 enabled 7710 Nokia Mobile phone, the user sees Figure 7(b). We use
Kannel 1.0 (open source) to connect mobile devices to WAP servers. WAP
(Wireless Application Protocol) is used to provide services on mobile phones
by enabling mobile devices to function as simple web browsers. Kannel 1.0
implements the WAP 1.1 specification gateway to connect a phone line to the
Elvin server. The WAP optimised protocols are translated to plain old HTTP
by a WAP gateway. At the time we were writing the Nokia 7710 prototype
there was no WAP browser that supports the push mechanism. Therefore
the user had to press on a receive button to read tickertape messages. Note
that MIME types are not sent.

Middleware for Reactive Components 95

– WAP 1.2 browser, the user sees Figure 7(c). We extend an open source WAP
browser (ja2wap) in order to have the first WAP browser supporting the
push mechanism compliant with the WAP forum specification. The browser
automatically displays tickertape messages and the user does not need to
press a button to load messages. MIME type attachments are not sent.

(a) Palm (b) Nokia 7710
WAP 1.1

(c) Palm- WAP 1.2 -
push

Fig. 7. Tickertape on mobile devices

8 Benefits of the m3 Architecture

The described examples allowed testing of some of the m3 architecture goals.
The focus of the Tickertape example has been on the ”plumbing” required to
integrate multiple forms of data delivery to the application level. The m3-RTE
prototype emphasises openness and generality of context description and man-
agement. The openness of the m3 architecture is demonstrated by the fact that
we only added less than ten lines of code into the MEADL and AM to plug
in a new component that enables tickertape viewing on different devices2. Such
conciseness also demonstrates the expressiveness of our coordination language
MEADL. Note that the adaptation mechanism can be more complex. For ex-
ample some sensitive tickertape messages must not be sent to particular roles
due to their physical location. Hence, m3-RTE features a universal approach to
adaptation which can support a reasonable set of adaptation mechanisms such
as discrete, continuous and community adaptation.

One of the main strengths of the coordination language MEADL is that
it simple, role-based and can be translated into XML. Furthermore the use of
an event based publish/subscribe concept as a core modelling concept allows
2 This doesn’t include the code required to write the actual components that imple-
ment the new communication and protocols which is a different engineering effort.

96 A. Rakotonirainy et al.

dynamic definition and management of event coordination between the Context
Manager, Adaptation Manager, Policy Manager and other component based
applications. The use of a publish/subscribe protocol eases the deployment of
a distributed version of the m3 architecture. To our knowledge no middleware
architecture that integrates and coordinates context, policy and adaptation to
support reactive components exists.

9 Conclusion and Future Work

This paper describes an open architecture used as a toolkit to build adaptable
enterprise applications for pervasive environments. It leverages heterogeneous
devices, existing mobility related standards and protocols. We have identified
context, adaptation and policy management as fundamental elements of perva-
sive computing applications, and shown how our architecture integrates these
three notions. The use of a role-based component model and MEADL coordi-
nation gives the m3 architecture the ability to provide dynamic plug and play,
and yet effectively coordinate enterprise components. The use of Elvin as the
main communication paradigm within the m3 architecture enables a loose form
of integration of components (or roles), permitting architectural reconfigurabil-
ity as reactions to the ever-changing contexts of applications or occurrences of
(a)synchronous events in a pervasive environment. A different way of building
applications is also proposed, where the behaviour of the application is explicitly
dependent on separately specified relevant context changes, required adaptations
and behaviour policies. An application is therefore constructed by defining (and
mixing and matching) these elements rather than by traditional monolithic ap-
plication building.

As a next step, work is being carried out on both an extension to the pro-
totype and on further adaptive and context-aware applications [13] in order to
fully capture and test the concepts introduced by the m3 architecture to sup-
port pervasive computing environments. We also are distributing the architecture
presented in Figure 3. Each node (or device) will have its own set of dedicated
managers (context, policy and adaptation managers) which communicate to co-
ordinate adaptations across several nodes. This permits a set of applications
running on possibly different devices to adapt and react cooperatively. Global
policies would then be needed which are disseminated to the nodes and inte-
grated with the local policies. We also plan to evaluate the performance of the
m3 architecture and compare it with conventional adaptive middleware.

References

1. Acharya, A. Ranganathan, M., Saltz,J. “A language for Resource-Aware Mobile
Programs”Mobile Object Systems: Towards the Programmable Internet, pages 111-
130. Springer-Verlag, April 1997. Lecture Notes in Computer Science No. 1222.

2. Banavar, G., Beck, J., Gluzberg,E., E., Munson, J., Sussman, J. and Zkowski,
D. “Challenges: An application Model for Pervasive Computing” 6th Proc annual
Intl. Conference on Mobile Computing and Networking MOBICOM 2000, Boston
August 2000

Middleware for Reactive Components 97

3. Bianchi,G., Campbell, A.T, Liao, R. “ On Utility-Fair Adaptive Services in Wire-
less Networks” Proc of the 6th Intl Workshop on QoS IEEE/IFIP IWQOS’98 Napa
Valley CA, May 1998

4. Blair,G,. Blair,L.,Issarny, V,. Tuma, P,. Zarras, A,. The Role of Software Archi-
tecture in Constraining Adaptation in Component-Based Middleware Platforms.
Middleware 2000 Proc LNCS 1795 - IFIP/ACM NY, USA, April 2000

5. Composite Capabilities/Preference Profiles CC/PP - W3C - http://www.w3.org/
Mobile/CCPP/

6. Arnold. D., Segall, B., Boot,J., Bond,A., Lloyd,M. and Kaplan,S Discourse with
Disposable Computers: How and why you will talk to your tomatoes, Usenix Work-
shop on Embedded Systems (ES99), Cambridge Massachusetts, March 1999 also
http://elvin.dstc.edu.au/

7. Davies, N. , Friday, A.Wade, S. and Blair, G. “A Distributed Systems Platform for
Mobile Computing” ACM Mobile Networks and Applications (MONET), Special
Issue on Protocols and Software Paradigms of Mobile Networks, Volume 3, Number
2, August 1998, pp143-156

8. Demers,A., Petersen, K.,Spreitzer, M., Terry,D., Theimer, M., Welch,B. “The
Bayou Architecture: Support for Data Sharing among Mobile Users” Proceedings
of the Workshop on Mobile Computing Systems and Applications, Santa Cruz,
California, December 1994, pages 2-7.

9. Anind K. Dey. “Enabling the Use of Context in Interactive Applications” Doctoral
Consortium paper in the Proceedings of the 2000 Conference on Human Factors
in Computing Systems (CHI 2000), The Hague, The Netherlands, April 1-6, 2000,
pp. 79-80.

10. C. Esftratiou, K. Cheverst, N. Davies, A. Friday, An Architecture for the Effective
Support of Adaptive Context-Aware Applications, in Proc. of 2nd International
Conference on Mobile Data Management, Hong-Kong, January 2001. Lecture Notes
in Computer Science, Vol 1987.

11. Eric Freeman, et al JavaSpaces(TM) Principles, Patterns and Practice The
Jini(TM) Technology Series June 1999 also http://www.sun.com/jini/specs/js-
spec.html

12. K. Henricksen, and J. Indulska., ”Adapting the Web Interface: An Adaptive Web
Browser”, Proceedings Australasian User Interface Conference 2001, Australian
Computer Science Communications, Volume 23, Number 5, 2001.

13. K. Henricksen, J. Indulska and A. Rakotonirainy ”Infrastructure for Pervasive
Computing: Challenges”, Workshop on Pervasive Computing and Information Lo-
gistics at Informatik 2001, Vienna, September 25-28, 2001.

14. J. Indulska, S.W. Loke, A. Rakotonirainy, V. Witana, A.Zaslavsky “An Open Ar-
chitecture for Pervasive Systems” The Third IFIP WG 6.1 International Working
Conference on Distributed Applications and Interoperable Systems September 2001
Krakow.

15. Wyckoff, P., McLaughry,S. W., Lehman, T. J. and Ford,D. A. “TSpaces” IBM
Systems Journal, August 1998 also http://www.almaden.ibm.com/cs/TSpaces/

16. Information Technology - Open Distributed Processing - Reference Model - Enter-
prise Language (ISO/IEC 15414 — ITU-T Recommendation X.911) July 1999

17. Joseph A., Kaashoek F. “Building reliable mobile-aware applications using the
Rover toolkit” MOBICOM ’96. Proceedings of the second annual international
conference on Mobile computing and networking, pages 117-129’

18. Kon, F. et al Monitoring, Security, and Dynamic Configuration with dynamicTAO
Reflective ORB Middleware 2000 Proc LNCS 1795 - IFIP/ACM NY, USA, April
2000

98 A. Rakotonirainy et al.

19. Medvidovic N, Taylor “A Framework for Classifying and Comparing Architecture
Description Language “ Proc Software engineering Notes, ESEC/FSE’96 - LNCS
Vol 22 number 6 November 1997

20. Noble, B., Satyanarayanan, M., Narayanan, D. Filton J.E, Flinn J.,Walker K.
, “Agile Application Aware Adaptation for Mobility” 16th ACM Symposium on
Operating System Principles 1997

21. Python programming Language http://www.python.org
22. Renesse,v-R. Birman, K., Hayden,M,., Vaysburd, A,., Karr, D. “Building Adaptive

systems using Ensemble” Cornell University Technical Report, TR97-1638, July
1997.

23. Rakotonirainy A., Bond A., Indulska,J,. Leonard.D. SCAF: A simple Component
Architecture Framework. Technology of Object-Oriented Languages and systems
TOOLS 33 - June 2000 - IEEE Computer Society - Mont St Michel France

24. Satyanarayanan, M. The Coda Distributed File System Braam, P. J. Linux Jour-
nal, 50 June 1998

25. Simple Object Access Protocol (SOAP) 1.1 http://www.w3.org/TR/SOAP/
26. Sun One brings mobile intelligence to the wireless world http://www.sun.com/

2001-0710/feature/
27. Extensible Markup Language (XML) 1.0 http://www.w3.org/XML/
28. Want, Z. and Garlan D., “Task-Driven Computing”. Technical Report, CMU-CS-

00-154, School of Computer Science CMU May 2000
29. Wireless Application Protocol - WAP Forum Specifications http://www.wapforum.

com/what/technical.htm

	Introduction
	Related Work
	High Level Description of the m3 Architecture
	m3 Design Requirements and Modelling Concepts
	m3 Architecture
	Coordination Layer
	Dedicated Managers Layer
	Service Layer
	Interactions between Components

	m3-RTE Implementation Issues
	The Use of Elvin
	m3-RTE Prototype

	Examples of Applications Using m3-RTE
	Application Aware Adaptation
	Tickertape

	Benefits of the m3 Architecture
	Conclusion and Future Work

