Abstract
We give a constructive characterization of graphs which are the union of k spanning trees after adding any new edge. This is a generalization of a theorem of Henneberg and Laman who gave the characterization for k = 2.
We also give a constructive characterization of graphs which have k edge-disjoint spanning trees after deleting any edge of them.
Research supported by the Hungarian National Foundation for Scientific Research Grant, OTKA T17580.
This author is supported by the Siemens-ZIB Fellowship Program and FKFP grant no. 0143/2001.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Frank: On the orientation of graphs. J. Combinatorial Theory, Ser. B, Vol. 28,No. 3 (1980), 251–261
A. Frank: Connectivity augmentation problems in network design, in: Mathematical Programming: State of the Art 1994, eds. J.R. Birge and K.G. Murty, The University of Michigan, (1994) 34–63
A. Frank: Connectivity and network flows, in: Handbook of Combinatorics (eds. R. Graham, M. Grötschel and L. Lovász), Elsevier Science B.V. (1995) 111–177.
A. Frank and Z. Király: Graph orientations with edge-connection and parity constraints. Combinatorica (to appear)
L. H enneberg: Die graphische Statik der starren Systeme. Leipzig (1911)
Z. Király, personal communication (2000)
G. Laman: On graphs and rigidity of plane skeletal structures. J. Engineering Math. 4 (1970) 331–340
L. Lovász: Combinatorial Problems and Exercises. North-Holland (1979)
W. Mader: Ecken vom Innen-und Aussengrad k in minimal n-fach kantenzusammenh ôngenden Digraphen. Arch. Math. 25 (1974), 107–112
W. Mader: Konstruktion aller n-fach kantenzusammenhôngenden Digraphen. Europ.J. Combinatorics 3 (1982) 63–67
C. St. J. A. Nash-Williams: Edge-disjoint spanning trees of nite graphs. J. London Math. Soc. 36 (1961) 445–450
C. St. J. A. Nash-Williams: Decomposition of finite graphs into forests. J. London Math. Soc. 39 (1964) 12
T.-S. Tay: Henneberg’s method for bar and body frameworks. Structural Topology 17 (1991) 53–58
W. T. Tutte: On the problem of decomposing a graph into n connected factors. J.London Math. Soc. 36 (1961) 221–230
W. T. Tutte: Connectivity in Graphs. Toronto University Press, Toronto (1966)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Frank, A., Szegő, L. (2001). An Extension of a Theorem of Henneberg and Laman. In: Aardal, K., Gerards, B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2001. Lecture Notes in Computer Science, vol 2081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45535-3_12
Download citation
DOI: https://doi.org/10.1007/3-540-45535-3_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42225-9
Online ISBN: 978-3-540-45535-6
eBook Packages: Springer Book Archive