Skip to main content

An Extension of a Theorem of Henneberg and Laman

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2081))

  • 1123 Accesses

Abstract

We give a constructive characterization of graphs which are the union of k spanning trees after adding any new edge. This is a generalization of a theorem of Henneberg and Laman who gave the characterization for k = 2.

We also give a constructive characterization of graphs which have k edge-disjoint spanning trees after deleting any edge of them.

Research supported by the Hungarian National Foundation for Scientific Research Grant, OTKA T17580.

This author is supported by the Siemens-ZIB Fellowship Program and FKFP grant no. 0143/2001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Frank: On the orientation of graphs. J. Combinatorial Theory, Ser. B, Vol. 28,No. 3 (1980), 251–261

    Article  MATH  Google Scholar 

  2. A. Frank: Connectivity augmentation problems in network design, in: Mathematical Programming: State of the Art 1994, eds. J.R. Birge and K.G. Murty, The University of Michigan, (1994) 34–63

    Google Scholar 

  3. A. Frank: Connectivity and network flows, in: Handbook of Combinatorics (eds. R. Graham, M. Grötschel and L. Lovász), Elsevier Science B.V. (1995) 111–177.

    Google Scholar 

  4. A. Frank and Z. Király: Graph orientations with edge-connection and parity constraints. Combinatorica (to appear)

    Google Scholar 

  5. L. H enneberg: Die graphische Statik der starren Systeme. Leipzig (1911)

    Google Scholar 

  6. Z. Király, personal communication (2000)

    Google Scholar 

  7. G. Laman: On graphs and rigidity of plane skeletal structures. J. Engineering Math. 4 (1970) 331–340

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Lovász: Combinatorial Problems and Exercises. North-Holland (1979)

    Google Scholar 

  9. W. Mader: Ecken vom Innen-und Aussengrad k in minimal n-fach kantenzusammenh ôngenden Digraphen. Arch. Math. 25 (1974), 107–112

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Mader: Konstruktion aller n-fach kantenzusammenhôngenden Digraphen. Europ.J. Combinatorics 3 (1982) 63–67

    MATH  MathSciNet  Google Scholar 

  11. C. St. J. A. Nash-Williams: Edge-disjoint spanning trees of nite graphs. J. London Math. Soc. 36 (1961) 445–450

    Article  MATH  MathSciNet  Google Scholar 

  12. C. St. J. A. Nash-Williams: Decomposition of finite graphs into forests. J. London Math. Soc. 39 (1964) 12

    Article  MathSciNet  Google Scholar 

  13. T.-S. Tay: Henneberg’s method for bar and body frameworks. Structural Topology 17 (1991) 53–58

    MATH  MathSciNet  Google Scholar 

  14. W. T. Tutte: On the problem of decomposing a graph into n connected factors. J.London Math. Soc. 36 (1961) 221–230

    Article  MATH  MathSciNet  Google Scholar 

  15. W. T. Tutte: Connectivity in Graphs. Toronto University Press, Toronto (1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frank, A., Szegő, L. (2001). An Extension of a Theorem of Henneberg and Laman. In: Aardal, K., Gerards, B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2001. Lecture Notes in Computer Science, vol 2081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45535-3_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-45535-3_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42225-9

  • Online ISBN: 978-3-540-45535-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics