Skip to main content

Fast 2-Variable Integer Programming

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2081))

Abstract

We show that a 2-variable integer program defined by m constraints involving coefficients with at most s bits can be solved with O(m+s logm) arithmetic operations or with O(m+logm logs)M(s) bit operations, where M(s) is the time needed for s-bit integer multiplication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, 1974.

    Google Scholar 

  2. K. L. Clarkson. Las Vegas algorithms for linear and integer programming when the dimension is small. Journal of the Association for Computing Machinery, 42:488–499, 1995.

    MATH  MathSciNet  Google Scholar 

  3. F. Eisenbrand. Short vectors of planar lattices via continued fractions. Information Processing Letters, 2001. to appear. http://www.mpisb.mpg.de/~eisen/ report_lattice.ps.gz

  4. S. D. Feit. A fast algorithm for the two-variable integer programming problem. Journal of the Association for Computing Machinery, 31(1):99–113, 1984.

    MATH  MathSciNet  Google Scholar 

  5. D. S. Hirschberg and C. K. Wong. A polynomial algorithm for the knapsack problem in two variables. Journal of the Association for Computing Machinery, 23(1):147–154, 1976.

    MATH  MathSciNet  Google Scholar 

  6. N. Kanamaru, T. Nishizeki, and T. Asano. Efficient enumeration of grid points in a convex polygon and its application to integer programming. Int. J. Comput. Geom. Appl., 4(1):69–85, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Kannan. Minkowski’s convex body theorem and integer programming. Mathe-matics of Operations Research, 12(3):415–440, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Kannan and L. Lovász. Covering minima and lattice-point-free convex bodies. Annals of Mathematics, 128:577–602, 1988.

    Article  MathSciNet  Google Scholar 

  9. Ravindran Kannan. A polynomial algorithm for the two-variable integer programming problem. Journal of the Association for Computing Machinery, 27(1): 118–122, 1980.

    MATH  MathSciNet  Google Scholar 

  10. D. E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, 1969.

    Google Scholar 

  11. J. C. Lagarias. Worst-case complexity bounds for algorithms in the theory of integral quadratic forms. Journal of Algorithms, 1:142–186, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. W. Lenstra. Integer programming with a fixed number of variables. Mathematics of Operations Research, 8(4):538–548, 1983.

    MATH  MathSciNet  Google Scholar 

  13. N. Megiddo. Linear time algorithms for linear programming in R3 and related problems. SIAM Journal on Computing, 12:759–776, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  14. N. Megiddo. Linear programming in linear time when the dimension is fixed. Journal of the Association for Computing Machinery, 31:114–127, 1984.

    MATH  MathSciNet  Google Scholar 

  15. H. E. Scarf. Production sets with indivisibilities. Part I: generalities. Econometrica, 49:1–32, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. E. Scarf. Production sets with indivisibilities. Part II: The case of two activities.Econometrica, 49:395–423, 1981.

    MATH  MathSciNet  Google Scholar 

  17. A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. (Fast computation of continued fraction expansions). Acta Informatica, 1:139–144, 1971.

    Article  MATH  Google Scholar 

  18. A. Schönhage. Fast reduction and composition of binary quadratic forms. In International Symposium on Symbolic and Algebraic Computation, ISSAC 91, pages 128–133. ACM Press, 1991.

    Google Scholar 

  19. A. Schönhage and V. Strassen. Schnelle Multiplikation gro_er Zahlen (Fast multiplication of large numbers). Computing, 7:281–292, 1971.

    MATH  Google Scholar 

  20. A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.

    Google Scholar 

  21. C. K. Yap. Fast unimodular reduction: Planar integer lattices. In Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pages 437–446, Pittsburgh, 1992.

    Google Scholar 

  22. L. Ya. Zamanskij and V. D. Cherkasskij. A formula for determining the number of integral points on a straight line and its application. Ehkonomika i Matematicheskie Metody, 20:1132–1138, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eisenbrand, F., Rote, G. (2001). Fast 2-Variable Integer Programming. In: Aardal, K., Gerards, B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2001. Lecture Notes in Computer Science, vol 2081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45535-3_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45535-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42225-9

  • Online ISBN: 978-3-540-45535-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics