Abstract
For cryptographic applications, normal bases have received considerable attention, especially for hardware implementation. In this article, we consider fast software algorithms for normal basis multiplication over the extended binary field GF(2m). We present a vector-level algorithm which essentially eliminates the bit-wise inner products needed in the conventional approach to the normal basis multiplication. We then present another algorithm which significantly reduces the dynamic instruction counts. Both algorithms utilize the full width of the data-path of the general purpose processor on which the software is to be executed. We also consider composite fields and present an algorithm which can provide further speed-up and an added flexibility toward hardwaresoftware co-design of processors for very large finite fields.
Chapter PDF
References
G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone. “An Implementation for a Fast Public-Key Cryptosystem”. Journal of Cryptology, 3:63–79, 1991.
G. B. Agnew, R. C. Mullin, and S. A. Vanstone. “An Implementation of Elliptic Curve Cryptosystems Over F2155”. IEEE J. Selected Areas in Communications, 11(5):804–813, June 1993.
D. W. Ash, I. F. Blake, and S. A. Vanstone. “Low Complexity Normal Bases”. Discrete Applied Mathematics, 25:191–210, 1989.
S. D. Galbraith and N. Smart. A Cryptographic Application of Weil Descent. In Proceedings of the Seventh IMA Conf. on Cryptography and Coding, LNCS 1764, pages 191–200. Springer-Verlag, 1999.
S. Gao and Jr. H. W. Lenstra. “Optimal Normal Bases”. Designs, Codes and Cryptography, 2:315–323, 1992.
M. A. Hasan. Look-up Table-Based Large Finite Field Multiplication in Memory Constrained Cryptosystems. IEEE Transactions on Computers, 49:749–758, July 2000.
M. A. Hasan, M. Z. Wang, and V. K. Bhargava. “A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields”. IEEE Transactions on Computers, 42(10):1278–1280, Oct. 1993.
D. Johnson and A. Menezes. “The Elliptic Curve Digital Signature Algorithm (ECDSA)”. Technical Report CORR 99-34, Dept. of C & O, University of Waterloo, Canada, August 23 1999. Updated: Feb. 24, 2000.
J. Lopez and R. Dahab. High Speed Software Multiplication in F2m. In Proceedings of Indocrypt 2000, pages 203–212. LNCS 1977, Springer, 2000.
Chung-Chin Lu. “A Search of Minimal Key Functions for Normal Basis Multipliers”. IEEE Transactions on Computers, 46(5):588–592, May 1997.
A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian. Applications of Finite Fields. Kluwer Academic Publishers, 1993.
R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson. “Optimal Normal Bases in GF(pn)”. Discrete Applied Mathematics, 22:149–161, 1988/89.
National Institute of Standards and Technology. Digital Signature Standard. FIPS Publication 186-2, February 2000.
S. Oh, C. H. Kim, J. Lim, and D. H. Cheon. “Efficient Normal Basis Multipliers in Composite Fields”. IEEE Transactions on Computers, 49(10):1133–1138, Oct. 2000.
C. Paar, P. Fleishmann, and P. Soria-Rodriguez. “Fast Arithmetic for Public-Key Algorithms in Galois Fields with Composite Exponents”. IEEE Transactions on Computers, 48(10):1025–1034, Oct. 1999.
A. Reyhani-Masoleh and M. A. Hasan. “A Reduced Redundancy Massey-Omura Parallel Multiplier over GF(2m)”. In 20th Biennial Symposium on Communications, pages 308–312, Kingston, Ontario, Canada, May 2000.
A. Reyhani-Masoleh and M. A. Hasan. “On Efficient Normal Basis Multiplication”. In LNCS 1977 Proceedings of Indocrypt 2000, pages 213–224, Calcutta, India, December 2000. Springer Verlag.
A. Reyhani-Masoleh and M. A. Hasan. “Fast Normal Basis Multiplication Using General Purpose Processors”. Technical Report CORR 2001-25, Dept. of C & O, University of Waterloo, Canada, April 2001.
M. Rosing. Implementing Elliptic Curve Cryptography. Manning Publications Company, 1999.
B. Sunar and C. K. Koc. “An Efficient Optimal Normal Basis Type II Multiplier”. IEEE Transactions on Computers, 50(1):83–88, Jan. 2001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Reyhani-Masoleh, A., Hasan, M.A. (2001). Fast Normal Basis Multiplication Using General Purpose Processors. In: Vaudenay, S., Youssef, A.M. (eds) Selected Areas in Cryptography. SAC 2001. Lecture Notes in Computer Science, vol 2259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45537-X_18
Download citation
DOI: https://doi.org/10.1007/3-540-45537-X_18
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43066-7
Online ISBN: 978-3-540-45537-0
eBook Packages: Springer Book Archive