
Tools for Collaboration
in Metropolitan Wireless Networks

G. Sibley and V. S. Sunderam

Math & Computer Science
Emory University

Atlanta, GA
30302

{gsibley I vss)@emory . edu

Abstract. This paper presents RRNAPI, a toolkit for accessing network per-
formance in Ricochet Radio Networks. It is envisioned that these tools are a
necessary stepping stone in developing frameworks for distributed computing
in wireless networks, in particular, extending Collaborative Computing Frame-
works (CCF). Many forms of traditional distributed computing require a reliable
network, however these programs do not extend to wireless networks because re-
liable connectivity is not generally possible with wireless networks. This paper
explains connectivity issues in Ricochet Networks, presents practical solutions
to these problems, and explains a toolkit that can be used when developing dis-
tributed applications to address these problems.

Keywords - Wireless, Ricochet, Collaborative Computing

1 Introduction
Today we witness the proliferation of wireless technologies such as IEEE 802.1 1ah
LAN [lo], Bluetooth [6], and Ricochet [l l] to name a few. While these technologies
and the wireless networks they comprise promise to free users from the desktop, they
also pose problems for many network applications. In particular, software that requires
consistently reliable networks begins to fail. Many software design techniques used in
distributed computing are among those that traditionally require a reliable network. In
the context of distributed computing, the terms traditional software or legacy software
refers to and includes such projects as Legion [5], GLOBUS [4], HARNESS [2], CCF
[9], PVM [16], etc. This whole suite of distributed computing has no inherent mecha-
nism to handle faults of the size and scope that occur in fixed wireless networks. Even
in wired networks, it is impossible to achieve 100% reliability. Wireless networks fare
much worse; environmental conditions as common as rain or fog can impede com-
munication channels. Faults, or trouble spots, last an in-determinant amount of time,
typically measured in seconds as opposed to milliseconds. Thus, for legacy software to
operate on a wireless network it will need some mechanism for handling trouble spots.

2 Ricochet Radio Networks

Ricochet Radio Networks are micro-cellular based networks in metropolitan areas.
Small (shoe box) sized radios are scattered throughout a city atop utility poles at ap-
proximately 5 per square mile. These radios have effective coverage areas that over-
lap creating nearly complete coverage. Environmental features such as buildings and

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 395−403, 2001.
Ó Springer-Verlag Berlin Heidelberg 2001c©

Microcell radios (MCR)

@ Trouble spot coverage

Trouble spot: 1
Position (longllat): -84.334487 1 33.798580
Category: 2
Possible cause: valley

Trouble spot: 2
Position (longllat): -85.337749 / 33.801498
Category: 2
Possible cause: television broadcast tower

Fig. 1. Qpical Ricochet Network and exemplar Trouble spots

bridges will create shadows within which coverage lacks. Further, areas without ade-
quate number of pole-top radios will obviously lack coverage. Poletops relay data to
Wireless Access Points (WAPs) which route these packets using a proprietary protocol
to a Network Interface Facility (NIF) then to the Network Operations Center (NOC)
and finally onto the Internet.

2.1 Trouble Spots

Trouble spots are localized and temporal. That is, a trouble spot exists at a particular
position, for a particular amount of time (possibly infinite). (See fig. 1). It is important
to note that there are two types of trouble spots; those that are anomalous, and those
that result from lack of radio coverage. This later type are not faults per se, rather they
are persistent characteristics of fixed wireless networks, while the former are atypical
network failures (for example, packet loss due to interference from a passing school bus
or from weather conditions.) In section 6 persistent trouble spot prediction is discussed.

3 Need for Application Level Awareness

It is desired that loosely connected nodes participating in a distributed computation be
tolerant of trouble spots, insofar as trouble spots do not permanently disrupt (or indeed
destroy) the distributed application. Ideally, a reliable protocol, such as TCPAP [7],
CCTL [14], or an extension thereof, could handle faults at the transport layer. However,
implementing a reliable transport layer on fixed wireless networks may not be a solu-
tion. Disconnection times are possibly very long in wireless networks [15], so while
the transport layer may still be working, the application above it may not be. How-
ever, there is significant information available to an application concerning connection
quality. Thus, a useful protocol would handle indeterminantly long disconnections, as
well as be aware of the quality of service provided by the network. These issues are of
paramount interest to an application that runs on top of the transport layer.

396 G. Sibley and V.S. Sunderam

Todays wireless networks are inherently faulty to such a degree that transport pro-
tocols alone cannot adequately address problems that arise in distributed applications.
Therefore, distributed applications must act intelligently by managing network usage
with regard to the networks current state. Our experience [l 11 with Ricochet Networks
suggests that as much as 20% of the time a modem is in service is spent within trouble
spots that last longer than one second. While most transport layer protocols can handle
faults of this nature, they do not offer the application the ability to easily assess the situ-
ation (i.e. quantify such metrics as proposed in [12] and discussed in section 3.1. Thus,
if necessary, (as is in Collaborative Computing Frameworks [I]), protocols for network
control should be embedded within the application layer. To be useful, these protocols
should offer an application knowledge about network connectivity. Next we examine
how to determine quality of connection.

3.1 What Metrics Are Useful?

From our previous work in evaluating Ricochet Radio Networks [12] three metrics have
been selected as useful when determining quality of connection. These are latency,
packet loss, and signal strength. Latency and packet loss can each be calculated using
datagram sockets and simple echo requests. The time period over which these statis-
tics are generated should of course be variable to accommodate different applications.
Signal strength is a quantity measured in decibels that in Ricochet Radio Networks typ-
ically ranges from -30 dB to -1 lOdB. This information is available via queries sent to
Ricochet modems AT commands. A modem gathers this data from all poletops it can
detect.

3.2 Other Useful Information

Poletops provide other information [8] beyond signal strength such as their latitude and
longitude, and their color. Among other things, color specifies whether or not a radio
is a WAP (color is not an immediately useful property). Latitude and longitude can be
used to give rough estimates of user position. The more radios are visible, the more
accurate that estimation becomes. Temporal positional data can also be used to make
estimates of the users heading. One can see how positional information is useful for
connectivity predication as it relates to application level awareness.

We have discussed two general types of trouble spots in Ricochet Radio Networks,
how to assess the severity of a trouble spot, and why it is necessary to offer this infor-
mation in an application level interface. Next we look at RRNAPI, a toolkit to serve this
task.

4 Ricochet Radio Network Application Program Interface

The Ricochet Radio Network Application Program Interface was developed in order
to enable programs that wish to take intelligent action based on network performance.
The API offers 21 functions (see appendix A). Programs instantiate RRNAPI by call-
ing RFWinit () . This function must be called before any other RRNAPI function;
RRN-done () is called when the application is finished with the API. The time from
initialization to completion constitutes a 'session'. Depending on how the mode param-
eter is set the API spawns a thread that handles I 0 from the modem, the upper level
API, the RRNAPI Server, and session files. This thread updates the client application

397Tools for Collaboration in Metropolitan Wireless Networks

I Client Application -1

Ricochet Radio Network API
- API functions that directly require no 10
- APl functions that use IP
- API functions that use the mudem

RRN API Background Thread I Dearnon
main laup:
I) query radio network radio network
2) check transport layer g-I-p machine
3) upload to RRN server RRN sewer

Fig. 2. Functional diagram for RRNAPI

at programmer specified intervals with 'snapshots' (see appendix B for a list of impor-
tant data structures) of the current network statistics. These snapshots can be saved and
loaded to and from disk or sent as updates to the RRNAPI Server.

Applications can choose the update threads behavior via the mode parameter to
R R N h i t . These flags (see fig. 3) can either update the server or not (RRN-DO-UPDATE),
use the modem to query the network or get this information from a file (RRN-USEAODEM
- this is useful for developing the set of internal functions that communicate with the
modem directly), continuously cache the session to disk (RRNXECORD), attach to a mo-
dem that is online or off-line (RRNAODEM-MASTER), and specify whether or not to per-
form the transport layer check using UDP (RRN-CHECK-TL - turning this off will render
useless further calls to RRN-packe t-10s s and RRN-la tency). The default initialization
mode for RRN-init will update the RRN Server, open the modem off line, check the
transport layer, and cache the session.

RRN-CHECK-TL enables the rrn-check-udp-thread. This thread uses ICMP echo re-
quest packets to estimate latency and packet loss. The time period over which these cal-
culations are performed and the interval between checks is set by RRN-con£ ig-tl-check.
This function also allows the application to set a latency threshold that specifies a max-
imum time period after which latency is considered to be infinity. This is useful for
programs that require performance within set parameters. The default values are 10
ICMP packets over 10 seconds with a an infinite (INTMX) threshold. Error codes are
set in the global rrn-error. The values of errors can be seen in figure 3. For a complete
listing of RRNAPI see Appendix A.

5 Technical Notes
RRNAPI works only with Ricochet Radio Networks, and is therefore useful to only a
small niche of wireless applications. While this may seem like a drawback at first, it is

398 G. Sibley and V.S. Sunderam

RRN Error Codes:

#define RRN-CONNECT
#define RRN-NO-DIAL-TONE
#define RRN-NO-ANSWER
#define RRN-NO-CARRIER
#define R N R I N G
#define RRN-BUSY
#define RRN-10-ERROR
#define RRN-INIT-ERROR
#define RRKMODEM-ERROR
#define RRN-TIMEOUT-ERROR

RRN Location Modes:

RRN Initilization Modes:

#define RRN-DO-UPDATE 1
#define RRN-USE-MODEM 4
#define RRN-USE-STDIO 8
#define RRN-RECORD 16
#define RRN-MODEM-MASTER 32
#define RRN-MODEM-SLAVE 64
#define RRN-CHECK-TL 1 2 8

RRN-ERROR)
RRN-ERROR)
RRN-ERROR)

RWERROR)
RRN-ERROR)
RWERROR)
RWERROR)
RRN-ERROR)

Fig. 3. RRNAPI Error Codes.

important to note that the API's usefulness stems from the ability to do three things: 1)
evaluate transport layer performance, 2) measure signal strength, and 3) estimate client
location. Both one and two above are provided by most wireless devices (for example,
Sprint PCS [13], 802.1 1b [lo] compliant cards, and CDPD [3]). However, point three is
not provided nor accessible in most wireless devices. This is the only limitation to ex-
tending RRNAPI to a more general wireless device API. Gathering location information
is trivial and accurate with the use of GPS.

The use of different devices, and indeed different modems of the same make, results
in different data sets for the same areas in a network. Thus, data gathered from Metricom
GS modems is not equivalent to data from Sierra Wireless modems or Novatel modems;
nor are results from one Metricom GS the same as those of another Metricom GS.
While the ability to generally model network performance is important, there is a need
to examine these models in light of which hardware is in use.

5.1 Extending RRNAPI
If GPS devices become pervasive in mobile electronics, then extending RRNAPI to
work on a broad range of devices is possible. One should note that the fore mentioned
issue of differentiating between types of modem is more imperative when the difference
is not between modems, but between entire technologies (e g the difference between
wireless LAN and Ricochet are vast when compared to the differences between one
make of Ricochet card and another). Thus, for a wireless API to be useful (in the sense
that RRNAPI is useful) it must include location information.

399Tools for Collaboration in Metropolitan Wireless Networks

RRNAPI is designed with a modular back end to support different modem hard-
ware. Modem specific functions in RRNAPI are defined separately. Anyone wishing to
implement RRNAPI with a modem other than the Ricochet GS serial modem will have
to rewrite the functions in modem. c and compile it with r rnapi . c. Later, these internal
functions will be dynamically loadable shared objects. Further, it may be useful to have
the API attempt to detect the modem make of an interface and then load an appropriate
function set.

Currently, RRNAPI requires Glib, a POSIX threads implementation, a Linux host,
and a working Ricochet GS Serial Modem. Porting RRNAPI to other Unix platforms
should be straightforward. Porting to Microsoft Windows will require some effort.

6 Future Work
The RRNAPI offers not only an interface for mobile clients to access network perfor-
mance, but also the ability to query a remote database that contains past network per-
formance. Ricochet Radio Network Daemons and Ricochet Radio Network Terminate
Stay Resident (RRND's and RRNTSR's) could be run on client computers that contin-
ually update an RRN Server with network statistics. This server holds temporal data on
the networks performance from the clients point of view. Given enough data it should be
possible to create an accurate picture of network performance at some time in the future.
This allows for the prediction of trouble spots. All programs that use the RRNAPI get
their network data (packet loss, signal strength, etc.) via a thread that queries the mo-
dem and network at application specified intervals. There is also the option to have this
thread send network performance data to the RRN Server. Such a database opens many
possibilities for research. What techniques would be used to model performance? What
accuracies are possible? Is it possible to predict temporal performance of the network?
Can network load be detected? These questions require further investigation.

A Appendix: RRNAPI Listing

The RRNAPI is available from h t t p : / /vector . ma thcs . emory . edu/ r rnap i /

RRN-done (void)

RRN-init () Input: modem device name, mode bits.
Output: returns zero on success. Sets r rn-error other-
wise.
Must be called before the API is used. Connects to the
modem and starts background I 0 threads.
Input: void.
Output: return zero on success. Sets r rn-error other-
wise.
Called to close the API.

RRN-set-rrn-f i l e () Input: string name of file
Output: void
Set file for session.

RRN-load-rrn-f i l e () Input: pointer to a linked list of snapshots.
Output: same list.
Loads previous session from file into a linked list of
snapshots.

400 G. Sibley and V.S. Sunderam

RRN-connection-status ()

RRN-ne twork-id ()

RRN-f irmware-version ()

Input: pointer to a linked list of snapshots.
Output: same list.
Saves session into file of snapshots.
Input: a list of poletops.
Output: how many poletops are on the list.
If input is null, returns the number of poletops currently
visible to the modem.
Input: poletop list, calculation mode.
Output: a radio signal strength indication (rssi).
Uses a list of poletops to calculate rssi. mode specifies
how to calculate the rssi; use RRN-RSSIAVG for an aver-
age of all poletops, or RNN-RSSIJEAR to get the strength
of the closest (actually, this is the strongest, not neces-
sarily the closest) poletop.
Input: void.
Output: an error code.
Input: void.
Output: Ricochet Network Number.
Input: void.
Output: string.
Returns the modems software version.
Input: void.
Output: string.
Returns the modems hardware version.
Input: void.
Output: linked list of RNN-poletop-t 's.
Returns a list of poletops sorted by location that are 'vis-
ible'.
Input: list of RRN-poletop-t's.
Output: prints to stdout.
Prints a list of RRN-poletop-t's.

RRN-se t-update-timeout () Input: a time in milliseconds.
Output: void.
Set how often to query the modem, check the transport
layer, and update the server.

RRN-packet-loss () Input: void.
Output: a percentage.
See what percentage of ICMP echo request packets
were lost over a set time period.

RRN-latency (void) Input: void.
Output: time in milliseconds.
Check the average latency over a set time period.

RRN-setheading () Input: a RRN-vector-t pointer.
Output: void.
RRNAPI maintains a heading. This is a vector from
the last location known to the current location with a
velocity magnitude.

401Tools for Collaboration in Metropolitan Wireless Networks

Input: a mode.
Output: a lat. long. location.
Calculate likely user location based on radio locations
and signal strength.
mode 0 = weighted average of active poletops. (de-
fault).
mode 1 = strongest, and most likely closest, poletop.
mode 2 = center without respect to signal strength.
These modes are RRN-RSSI AVG, RRN-RSSIJEAR and
RRN-RSSIJIID.

RRN-print-modem () Input: a RRN-modem-t.
Output: void.
Print modem information.

RRNmodem-in£ o () Input: void.
Output: pointer to a RRNmodem-t.
Get modem information. This does NOT query the mo-
dem, it just sees what RRN-init found when the API
was started.

RRN-con£ ig-tl-check () Input: number of ICMP packets to send, interval be-
tween packets, threshold for latency.
Output: void.
Establishes the behavior of rrn-chec k-udp-thread.

B Appendix: Data Structures

typedef struct -vector-t{
double base-long;
double base-lat;
double mag-long;
double mag-lat;

)RRN_vector-t;

typedef struct _poletop-t{
double latitude;
double longitude;
int strength;
int color;

typedef struct -udpinfo-t{
unsigned int latency;
unsigned int latency-threshold;
float packet-loss;
unsigned int delta;
unsigned int width;

) Rwudpinf o-t ;

402 G. Sibley and V.S. Sunderam

typedef struct -snapsho
GList
struct timeval
RRN-udpinfo-t
RRN-vector-t

) RWsnapshot-t;

st;

References

1. S. Chodrow, S. Cheung, P. Hutto, A. Krantz, P. Gray, T. Goddard, I. Rhee, and V. Sunderam.
CCF: A Collaborative computing frameworks. In IEEE Internet Computing, January 1 Febru-
ary 2000.

2. J. Dongarra, A. Geist, J. Kohl, P. Papadopoulos, and V. Sunderam. Harness: Heterogeneous
adaptable reconfigurable networked systems. In High Pellformance Distributed Computing,
1998.

3. Wireless Data Forum. Cdpd system specification release 1.1, 1998. URL: http://www.
wirelessdata, org/develop/cdpdspec/index. asp.

4. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International
Journal of Supercomputer Applications, 1997. URL: http://www.globus. org/research/
papers. html.

5. A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P.

F. Reynolds Jr. A synopsis of
the legion project. Technical Report CS-94-20, Department of Computer Science, University
of Virginia, June 1996. URL: http://www.cs,

virginia.edu/legion/CS-94-20.pdf
6. The Bluetooth Special Interest Group. The Official Bluetooth Website, 1999. URL:

http://www, bluetooth. com/developer/whitepaper/whitepaper.asp.
7. E. A. Hall. The Core Internet Protocols: The De$nitive Gude. 07Reilly & Associates, 2000.
8. Metricom Incorporated. Ricochet Technology Overview, 1999. URL: http://www.ricochet.

codricochet-ad van tage/tech-overvie w/.
9. R. J. Loader and J. S. Pascoe. Future Directions of The CCF Project. Technical report, The

University of Reading, Department of Computer Science, 2000. Available by request (in
press).

10. IEEE White Paper. Ieee 802.11b standard. Web Page, 2000. URL: http://www. wlana.
c o d e a d 8 0 2 1 I . htm.

11. J. S. Pascoe, G. Sibley, V. S. Sunderam, and R. J. Loader. Mobile Wide Area Wireless Fault
Tolerance. Technical report, University of Reading and Emory University, 2001.

12. J. S. Pascoe, G. Sibley, V. S. Sunderam, and R. J. Loader. Mobile Wide Area Wireless Fault
Tolerance. Technical report, University of Reading and Emory University, 2001.

13. Sprint PCS. Sprint pcs developers forum, 2000. URL: http://www. developer.sprintpcs. c o d .
14. 1. Rhee, S. Cheung, P. Hutto, A. Krantz, and V. Sunderam. Group Communication Support

for Distributed Collaboration Systems. In Proc. Cluster Computing: Networks, Sojbvare
Tools and Applications, December 1998.

15. G. Sibley. Ricochet Network Personal Communications. Technical Report 1 100-0 1, Depart-
ment of Math and Computer Science, 2000. Emory University.

16. V. S. Sunderam. Pvm: A framework fo parallel distributed computing. Concurrency, Practice
and Experience, December 1990.

403Tools for Collaboration in Metropolitan Wireless Networks

	Introduction
	Ricochet Radio Networks
	Trouble Spots

	Need for Application Level Awareness
	What Metrics Are Useful?
	Other Useful Information

	Ricochet Radio Network Application Program Interface
	Technical Notes
	Extending RRNAPI

	Future Work
	Appendix: RRNAPI Listing
	Appendix: Data Structures
	References

