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Abstract. We discuss the cellular automata approach and its extensions, the
lattice Boltzmann and multiparticle methods.  The potential of these techniques
is demonstrated in the case of modeling complex systems. In particular, we
consider simple applications taken from various scientific domains. We discuss
our distributed particle simulation of flow, based on a parallel lattice Boltzmann
Method. Efficient parallel execution is possible, provided that (dynamic) load
balancing techniques are applied. Next, we present a number of case studies of
flow in complex geometry, i.e. flow in porous media and in static mixer
reactors.

1. The Cellular Automata Approach

A natural way to describe a physical, chemical or biological system is to propose a
model of what we think is happening. During this process we try to keep only the
ingredients we believe to be essential whilst still capturing the behavior we are
interested in. Using an appropriate mathematical machinery, such a model can be
expressed in terms a set of equations whose solution gives the desired answers on the
system. The description in terms of equations is very powerful and corresponds to a
rather high level of abstraction. For a long time, this methodology has been the only
tractable way for scientists to address a problem.

Another approach, which has been made possible by the advent of fast computers,
is to stay at the level of the model and its basic components. The idea is that all the
information is already contained in the model and that a computer simulation will be
able to answer any possible question on the system by just running the model for
some time. Thus, there is no need to use a complicated mathematical tool to obtain a
high level of description. We just need to express the model in a way which is suitable
to an effective computer implementation. Cellular automata constitute a paradigm in
which simple models of complex phenomena can be easily formulated. In particular,
cellular automata models illustrate the fact that a complex behavior emerges out of
many simply interacting components through a collective effect.

The degree of reality of the model depends on the level of description we expect.
When we are interested in the global or macroscopic properties of a system the
microscopic details of a system are often irrelevant. On the other hand, symmetries
and conservation laws are usually the essential ingredients of such mesoscopic
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description. It is therefore a clear advantage to invent a much simpler microscopic
reality, which is more appropriate to our computational means of investigation.

A cellular automata model can be seen as a fictitious universe which has its own
microscopic reality but, nevertheless, has the same macroscopic behavior as the real
system we are interested in. The examples in the next section will illustrate this
statement.

Cellular automata (CA) are an idealization of a physical system in which space and
time are discrete.  In addition, the physical quantities (or state of the automaton) take
only a finite set of values. Since the time it has been invented by von Neumann in the
late 1940s, the cellular automata approach has been applied to a large range of
scientific problems [1, 2].

The original motivation of von Neumann was to extract the abstract mechanisms
leading to self-reproduction of biological organisms. [2]

Following the suggestions of S. Ulam, von Neumann addressed this question in the
framework of a fully discrete universe made up of cells. Each cell is characterized by
an internal state, which typically consists of a finite number of information bits.  Von
Neumann suggested that this system of cells evolves, in discrete time steps. The rule,
determining the evolution of this system is the same for all cells and is a function of
the states of the neighboring cells. Similarly to what happens in any biological
system, the activity of the cells takes place simultaneously. However, the same clock
drives the evolution of each cell and the updating of the internal state of each cell
occurs synchronously. Such fully discrete dynamical systems (cellular space) as
invented by von Neumann are now referred to as a cellular automata (CA).

After the work of von Neumann, other authors have followed the same line of
research and nowadays the problem is still of interest [3] and has lead to interesting
developments for new computer architectures and algorithms. [4, 5]

A very important feature of CAs is that they provide simple models of complex
systems. They exemplify the fact that a collective behavior can emerge out of the sum
of many, simply interacting, components. Even if the basic and local interactions are
perfectly known, it is possible that the global behavior obeys new laws that are not
obviously extrapolated from the individual properties, as if the whole is more  than
the sum of all the parts. This properties makes cellular automata a very interesting
approach to model physical systems and in particular to simulate complex and
nonequilibrium phenomena. [6]

The studies undertaken by S. Wolfram in the 1980s [7] clearly establishes that a
CA (the famous Wolfram’s rules) may exhibits many of the behaviors encountered in
continuous dynamical systems, yet in a much simpler mathematical framework.  A
further step is to recognize that CAs are not only behaving similarly to some
dynamical processes, they can also represent an actual model of a given physical
system, leading to macroscopic predictions that could be checked experimentally.
This fact follows from statistical mechanics which tells us that the macroscopic
behavior of many systems is quite disconnected from its microscopic reality and that
only symmetries and conservation laws survives to the change of observation level: it
is well known that the flows of a fluid, a gas or even a granular media are very similar
at a macroscopic scale, in spite of their different microscopic nature.

Although John von Neumann introduced the cellular automata theory several
decades ago, only in recent years it became significant as a method for modeling and
simulation of complex systems. This occurred due to the implementation of cellular
automata on massively parallel computers. Based on the inherent parallelism of
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cellular automata, these new architectures made possible the design and development
of high-performance software environments. These environments exploit the inherent
parallelism of the CA model for efficient simulation of complex systems modeled by
a large number of simple elements with local interactions. By means of these
environments, cellular automata have been used recently to solve complex problems
in many fields of science, engineering, computer science, and economy. In particular
parallel cellular automata models are successfully used in fluid dynamics, molecular
dynamics, biology, genetics, chemistry, road traffic flow, cryptography, image
processing, environmental modeling, and finance. [3]

Interesting examples are the Lattice Gas Automata for fluid flow, and the derived
Lattice Boltzmann models. The sequel of the paper will introduce these mesoscopic
models and demonstrate the potential of Cellular Automata as a Mesoscopic
Approach to Model and Simulate Complex Systems.

2. Particle Simulation of Flow

Some 12 years ago theoretical physicists showed that an highly idealized model of a
gas, consisting of particles that have a very limited set of velocities and that are
confined to a lattice behaves, on average, as an incompressible fluid [8]. This Lattice
Gas Automaton (LGA) is a particle model for fluid flow and is a true CA. In this
section we shortly introduce LGA and show how it relates to CA. Detailed theory
behind LGA is introduced in two recent books. [9, 10]

Consider a hexagonal lattice, as in Fig. 1. Particles live on the links of the lattice,
and they can move from node to node. The dynamics of the particles is such that they
all move from one node to another. Next, if particles meet on a node, they collide and
change direction (see Fig. 1). The collisions are such that they obey the physical
constraints of conservation of mass, momentum, and energy.

Fig. 1. Lattice and particle update mechanism for a LGA. A dot denotes a particle and the
arrow its moving direction. From left to right an initial condition, streaming, and collision of
particles are shown.

We can formally define a CA rule for such an LGA as follows. Suppose that the
state of a cell is determined by bm surrounding cells. Usually, only the nearest and
next-nearest neighbors are considered. For example, on a square lattice with only
nearest neighbor interactions bm = 4, if next-nearest neighbors are also included bm =8,
and on a hexagonal lattice with nearest neighbor interactions bm = 6. Furthermore,



Cellular Automata as a Mesoscopic Approach         521

suppose that the state of the cell is a vector n of b = bm bits. Each element of the state
vector is associated with a direction on the CA lattice. For example, in the case of a
square grid with only nearest neighbor interactions we may associate the first element
of the state vector with the north direction, the second with east, the third with south,
and the fourth with west. With these definitions we construct the following CA rule
(called the LGA rule), which consists of two sequential steps:
1. Each bit in the state vector is moved in its associated direction (so in the example,

the bit in element 1 is moved to the neighboring cell in the north) and placed in the
state vector of the associated neighboring cell, in the same position (so, the bit in
element 1 is moved to element 1 of the state vector in the cell in the north
direction). In this step each cell is in fact moving bits from its state vector in all
directions, and at the same time is receiving bits from all directions, which are
stored into the state vector.

2. Following some deterministic or stochastic procedure, the bits in the state vector
are reshuffled. For instance, the state vector (1,0,1,0) is changed to (0,1,0,1).

Maybe very surprisingly, if we assign physical quantities to this CA, enforce physical
conservation laws on the bit reshuffling rule of step 2, and use methods from
theoretical physics to study the dynamics, we are in fact able to analyze the CA in
terms of its average behavior. The average state vector of a cell and the average flow
of bits between cells can be calculated. Even better, it turns out, again within the
correct physical picture that this CA behaves like a real fluid (such as water) and
therefore can be used as a model for hydrodynamics. Furthermore, as the LGA rule is
intrinsically local (only nearest and next nearest neighbor interactions) we constructed
an inherently parallel particle model for fluid flow.

Associate the bits in the state vector with particles; a one-bit codes for the presence
of a particle, and a zero bit codes for the absence of a particle. Assume that all
particles are equal and have a mass of 1. Step 1 in the LGA-CA is now interpreted as
streaming of particles from one cell to another. If we also introduce a length scale, i.e.
a distance between the cells (usually the distance between nearest neighbors cells is
taken as 1) and a time scale, i.e. a duration of the streaming (i.e. step 1 in the LGA-
CA rule, usually a time step of 1 is assumed), then we are able to define a velocity ci

for each particle in direction i (i.e. the direction associated with the i-th element of the
state vector n). Step 1 of the LGA-CA is the streaming of particles with velocity ci

from one cell to a neighboring cell. Now we may imagine, as the particles meet in a
cell that they collide. In this collision the velocity of the particles (i.e. both absolute
speed and direction) can be changed. The reshuffling of bits in step 2 of the LGA-CA
rule can be interpreted as a collision of particles. In a real physical collision, mass,
momentum, and energy are conserved. Therefore, if we formulate the reshuffling such
that these three conservation laws are obeyed, we have constructed a true Lattice Gas
Automaton, i.e. a gas of particles that can have a small set of discrete velocities ci,
moving in lock-step over the links of a lattice (space is discretized) and that all collide
with other particles arriving at a lattice point at the same time. In the collisions,
particles may be sent in other directions, in such a way that the total mass and
momentum in a lattice point is conserved.

We can now define for each cell of the LGA-CA a density r and momentum ru,
with u the velocity of the gas:
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where Ni = <ni>, i.e. a statistical average of the Boolean variables; Ni should be
interpreted as a particle density.

Fig. 2. LGA simulation of flow around a cylinder. The arrows are the flow velocities, the
length is proportional to the absolute velocity. The simulations were done with FHP-III, on a
32�64 lattice, the cylinder has a diameter of 8 lattice spacings, only a 32�32 portion of the
lattice is shown; periodic boundary conditions in all directions are assumed. The left figure
shows the result of a single iteration of the LGA, the right figure shows the velocities after
averaging over 1000 LGA iterations.

If we let the LGA evaluate and calculate the density and momentum as defined in
eqn. (1), these quantities behave just like a real fluid. In Fig. 2 we show an example of
an LGA simulation of flow around a cylinder. In left figure we show the results of a
single iteration of the LGA, so in fact we have assumed that Ni = ni. Clearly, the
resulting flow field is very noisy. In order to arrive at smooth flow lines one should
calculate Ni = <ni>. Because the flow is static, we calculate Ni by averaging the
Boolean variables ni over a large number of LGA iterations. The resulting flow
velocities are shown in the left panel of Fig. 2.

Immediately after the discovery of LGA as a model for hydrodynamics, it was
criticized on three points; noisy dynamics, lack of Galilean invariance, and
exponential complexity of the collision operator. The noisy dynamics is clearly
illustrated in Fig. 2. The lack of Galilean invariance is a somewhat technical matter
which results in small differences between the equation for conservation of
momentum for LGA and real Navier-Stokes equations, for details see e.g. [10].
Finally, adding more velocities in an LGA leads to increasingly more complex
collision operators, exponentially in the number of particles. Therefore, another
model, the Lattice Boltzmann Method (LBM), was introduced. This method is
reviewed in detail in [11].

The basic idea in LBM is that one should not model the individual particles ni, but
immediately the particle densities Ni. This means that particle densities are streamed
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from cell to cell, and particle densities collide. This immediately solves the problem
of noisy dynamics. However, in a strict sense we no longer have a CA with a Boolean
state vector. However, we can view LBM as a generalized CA. It is easy to make
LBM Galilean invariant, thus solving the second problem of LGA. Finally, a very
simple collision operator is introduced. This so-called BGK collision operator models
the collisions as a single-time relaxation towards equilibrium. This L-BGK method is
also developed for many other lattices, e.g. in two or three-dimensional cubic lattices
with nearest and next nearest neighbor interactions. The LBM and especially the L-
BGK has found widespread use in simulations of fluid flow.

3. Parallel Lattice Gas and Lattice Boltzmann Simulations

The local nature of the LGA and LBM interactions allows a very straightforward
realization of parallelism. A geometric decomposition of the lattice with only local
message passing between the boundaries of the different domains is sufficient to
realize an efficient parallel simulation. For instance, we have developed a generic 2-
dimensional LGA implementation that is suitable for any multi-species (thermal)
LGA [12]. Parallelism was introduced by means of a 1-dimensional, i.e strip-wise,
decomposition of the lattice. As long as the grid dimension compared to the number
of processors is large enough, this approach results in a very efficient parallel
execution.
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Fig. 3. The processor load, on 16 processors, for slice and ORB decomposition of the elutriator
chamber benchmark (see [13]). On the x-axis are the processor ID’s and on the y-axis the
execution time of each processor.

This LGA system is mainly used for simulations in simple rectangular domains
without internal obstacles. However, in a more general case, where the boundaries of
the grid have other forms and internal structure (i.e. solid parts where no particles will
flow) the simple strip-wise decomposition results in severe load imbalance. In this
case, as was shown in [13], a more advanced decomposition scheme, the Orthogonal
Recursive Bisection (ORB) method [14], still leads to highly efficient parallel LBM
simulations. ORB restores the load balancing again, however at the price of a
somewhat more complicated communication pattern between processors. In Fig. 3 we
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show, for a representative 2D benchmark, the processor load. In a simple slice
decomposition, the load on each processor differs a lot. For the ORB the load is
almost balanced. This results for this benchmark, in reductions of execution times as
large as 40%. For details we refer to [13].

For flow problems with a static geometry the ORB decomposition seems to be
most appropriate. However, we are also interested in flow simulations where the
geometry dynamically changes during the simulation. Here we refer to e.g. free flow
around growing biological objects [15] or bounded flows with dynamically changing
boundaries (e.g. blood flow in the heart). In this case an initially well-balanced
parallel computation may become highly unbalanced. This may be overcome by a
redundant scattered decomposition or by dynamic load balancing. Here we report
some preliminary results of the first approach, the latter will be published elsewhere
[16].

We consider growth of an aggregate in a three dimensional box. We must simulate
flow around the object. The details of the streamlines close to the object determine its
local growth. Due to the growth of the aggregate a straightforward decomposition (for
example partitioning of the lattice in equal sized slices or boxes) would lead to strong
load imbalance. To solve this problem we have tested two strategies to obtain a more
equal distribution of the load over the processors:
1. Box decomposition in combination with scattered decomposition.
2. Orthogonal Recursive Bisection (ORB) in combination with scattered

decomposition.

Fig. 4. Decomposition of an irregular shaped object in a 2D lattice. In this case 100 blocks are
scattered over 4 processors.

The idea is to decompose the grid in a large number of partitions, much larger than
the number of available processors, using either a box decomposition or ORB. Next,
the partitions are randomly assigned to a processor. An example of a scattered
decomposition over 4 processors of an irregular shaped object in a 2D lattice is shown
in Fig. 4. In this example the lattice is divided into 100 blocks, where each block is
randomly assigned to one of the four processors. Most of the computation is done in
the blocks containing exclusively fluid nodes. The scattering of the blocks over the
processors leads to a spatial averaging of the load, where decreasing block sizes cause
a better load balancing, but also an increasing communication overhead. [17]
Especially in simulations in which the shape of the object cannot be predicted,
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redundant scattered decomposition is an attractive option to improve the load balance
in parallel simulations [18, 19].

We have compared both decomposition strategies by computing the load balancing
efficiency:

maxmin llload =e , (2)
where lmin is the load of the fastest process and lmax the load of the slowest process. The
two decomposition strategies were tested by using two extreme morphologies of the
aggregates, a very compact shape and a dendritic shaped aggregate, and by measuring
the load balancing efficiency during one iteration of the parallel LBM on 4
processors. The results are shown in Fig. 5. These results indicate that the
combination of redundant ORB or box decomposition in combination with a scattered
decomposition of partitions on processors may indeed improve load balancing.
However, a disadvantage is that although the load balancing efficiencies increase with
the number of redundant blocks, the communication overhead also increases.
Furthermore, this test was for a single iteration only. We are currently working on
testing these methods for real growing objects.

Fig. 5. The load balancing efficiency as a function of the total number of redundant blocks
scattered on 4 processors, for box and ORB decomposition and for a compact and dendritic
aggregate.

4. Cases: Flow in Complex Geometry

We applied our distributed particle simulation environment as described above for a
large number of simulations of fluid flow in complex geometries. Here we show two
representative examples, that of flow in random fiber networks and of flow in a static
mixer reactor.

The first example is flow in a random fiber network, as drawn in Fig. 6. The fiber
network is a realistic model of paper, and the question was to obtain the permeability
of the network as a function of the volume fraction of fibers. Simulations were
performed on 32 nodes of a Cray T3E using our parallel LBM environment described
in the previous section. We obtained permeability curves that are in very good
agreement with experimental results (see [20]).
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Another impressive example is flow in a Static Mixer Reactor [21]. In such a mixer
high viscosity fluids are mixed by letting them flow around a complex arrangement of
internal tubes. A typical mixer is shown in Fig. 7. Here, LBM simulations and
conventional Finite Element simulations where compared, which agreed very well.
The simulation results also agree very well with experimental results. This shows that
LBM, which is much easier to parallelize and much easier to extend with more
complex modeling compared to Finite Element, (multi-species flow, thermal effects,
reactions), is very suitable in real life problems involving complex flow.

Fig. 6. A random fiber network. Fig. 7. A Static Mixer Reactor. Flow lines
resulting from LBM simulations are also
shown.

5. Conclusions

Within the general concept of Cellular Automata we have developed a distributed
mesoscopic particle simulation environment for fluid flow. Parallel Lattice Gas
Automata and Lattice Boltzmann methods have been realized, and we showed that by
carefully taking load balancing into account it is possible to achieve very high parallel
efficiencies. By means of two realistic examples of flow in complex geometries the
power and potencies of such a distributed particle simulation environment were
demonstrated.
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