Computational Methods for (Geometric
Processing. Applications to Industry

A. Iglesias, A. Galvez, and J. Puig-Pey

Department of Applied Mathematics and Computational Sciences, University of
Cantabria, Avda. de los Castros, s/n, E-39005, Santander, Spain
iglesias@unican.es

Abstract. This paper offers a unifying survey of some of the most rel-
evant computational issues appearing in geometric processing (such as
blending, trimming, intersection of curves and surfaces, offset curves and
surfaces, NC milling machines and implicitization). Applications of these
topics to industrial environments are also described.

1 Introduction

Geometric processing is defined as the calculation of geometric properties of
already constructed curves, surfaces and solids []. In its most comprehensive
meaning, this term includes all the algorithms that are applied to already exist-
ing geometric entities [16]. As pointed out in [5], since geometric processing is
intrinsically hard there is neither a unified approach nor “key developments” such
as the Bézier technique [60] for design. On the contrary, the literature on geo-
metric processing is much more disperse among different sources. The aim of the
present paper is precisely to offer a unifying survey of some of the most relevant
computational issues appearing in geometric processing as well as a description
of their practical applications in industry. Obviously, this task is too wide to be
considered in all its generality, and some interesting topics in geometric process-
ing, such as curvature analysis, contouring, curve fairing, etc. have been omitted.
We restrict ourselves to blending (Section [2)), trimmed surfaces (Section 2:2)),
curve and surface intersection (Section 2.3)), offset curves and surfaces (Section
24), NC milling technology (Section 23] and implicitization (Section 2.6]).

2 Some Geometric Processing Topics

2.1 Blend Surfaces

We use the term blending to mean the construction of connecting curves and
surfaces and the rounding off of sharp corners or edges. Thus, we talk about su-
perficial blending to indicate that no explicit mathematical formula is available.
It appears in the production process [87I88], in procedures such as round off a
corner or edge with radius r. The blend described by additional surfaces con-
necting smoothly some given surfaces is usually referred to as surface blending,

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 698-[T07] 2001.
(© Springer-Verlag Berlin Heidelberg 2001



Computational Methods for Geometric Processing 699

while the volumetric blending is used to mean the combination of objects in a
solid modeling system (see [34], Chapter 14).

The most interesting blend for our purposes is that in parametric form. To
this aim, a number of methods are described, from interactive methods [4J50] to
automatic methods based on calculation of intersections of offset surfaces to the
two given surfaces [46l56]. Blending of tensor product B-spline or Bézier surfaces
(see [I8]20/34] for a definition) are analyzed, for example, in [AIT224]45]. See also
[86] for blending algebraic patches and [28]66] for implicit surfaces.

2.2 Trimmed Surfaces

Trimmed surfaces have a fundamental role in CAD. Most complex objects are
generated by some sort of trimming/scissoring process, i.e. unwanted parts of the
rectangular patch are trimmed away (see Fig. [[). Trimmed patches are also the
result of Boolean operations on solid objects bounded by NURBS surfaces (see
[T9J6TJ68] for a definition). In the computer-aided design pipeline, the trimmed
patch undergoes a number of processes such as rendering for visualization, cutter
path generation, area computation or rapid prototyping, also known as solid
hard copy [719]. For visualization, trimmed surfaces are rendered in two stages
[67/77]: the surface is divided into a number of planar tesselants (triangles or
other polygons), which are rendered using standard methods for planar polygons.
Other algorithms for tessellation of trimmed NURBS surfaces can be found in
[63] (and references 6-19 therein).

Fig. 1. Example of a trimmed NURBS surface

2.3 Intersection of Curves and Surfaces

In many applications, computation of the intersections of curves and surfaces
is required. Among them, we quote smooth blending of curves and surfaces
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(Section [27]), the construction of contour maps to visualize surfaces, Boolean
operations on solid bodies and determination of self-intersections in offset curves
and surfaces (Section 2:4)).

There exists a significant body of literature on the calculation of intersections
of two parametric surfaces [1[6G[1823I30/76] (see also [17] for a more exhaustive
bibliography). Recent developments include the possibility of handling intersec-
tion singularities [I0J49]. Intersections of offsets (see Section 2:4]) of parametric
surfaces are analyzed in [85]. This problem is often of great interest: for instance,
a blend surface (see Section [ZT) of two surfaces can be constructed by moving
the center of a sphere of given radius along the intersection curve of two surfaces
that are offset from the base surfaces by the radius of the sphere.

However, there has been no known algorithm that can compute the intersec-
tion curve of two arbitrary rational surfaces accurately, robustly and efficiently
[84]. In addition, it is known that two surface patches intersect in a curve whose
degree is much higher than the parametric degree of the two patches. Thus, two
bicubic patches intersect in a curve of degree 324!!! Fortunately, the situation is
better when we restrict the domain of input surfaces to simple surfaces (planes,
quadrics and tori, i.e. the so-called CSG primitives) [A3B3J78]. These surfaces
are important in conventional solid modeling systems for industry, since they
can represent a large number of mechanical parts of a car, ship, plane, etc.

As noticed in the previous paragraph, algorithms for intersections strongly
depend on the general form of the curves and surfaces we are dealing with. If
both objects are given in implicit form, such an intersection is found by solving a
system of nonlinear equations. This can be achieved through numerical methods
[23], differential geometry [3] or a combination of geometric and analytic methods
[b4)]. If the objects are described as free-form curves and surfaces [18]20/23/34]
61168], methods can be grouped into several categories: algebraic methods, based
on implicitization (Section 2.6]), subdivision methods, which divide the objects to
be intersected into many pieces and check for intersections of the pieces [69J13]
26027[42/4791], discretization methods, which reduce the degrees of freedom by
discretizing the surface representation in several ways, such as contouring [T458]
81| or parameter discretization [635], hybrid methods, which combine subdivision
and numerical methods [82/90)], etc.

2.4 Offset Curves and Surfaces

Offsetting is a geometric operation which expands a given object into a similar
object to a certain extent. In general, we deal with offset curves and surfaces,
which are also curves and surfaces at a constant distance d from a given initial
curve or surface. Several methods for the computation of the offsets for curves
are compared in [I5]. As pointed out in [59], offsetting general surfaces is more
complicated, and an offset surface is often approximated [21], although this ap-
proximation becomes inaccurate near its selfintersecting area [2l59]. Another
approach for computing offsets of NURBS curves and surfaces is given in [62].
Offsetting has various important applications [69]. For example, if the inner
surface of a piece is taken as the reference surface, the outer surface can be
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Fig. 2. Application of the offset operation: the outer surface of the piece is the offset
of the inner trimmed NURBS surface

mathematically described by an offset surface corresponding to a distance equal
to the thickness of the material (see Fig. [2)). Offsets also appear in cutter-path
generation for numerical control machine tools: pieces of a surface can be cut,
milled or polished using a laser-controlled device to follow the offset. In the case
of curves, they can be seen as the envelope corresponding to moving the center
of a circle of radius d along the initial curve. This allows to define both the
inside and outside offset curves, with applications in milling. Finally, they are
fundamental tools (among others) in the constant-radius rounding and filleting
of solids or in tolerance analysis, for definition of tolerance zones, etc.

We should note, however, that offset curves and surfaces lead to several prac-
tical problems. Depending on the shape of the initial curve, its offset can come
closer than d to the curve, thus causing problems with collisions, for instance,
when steering a tool. These collision problems also arise in other applications,
as path-planning for robot motions, a key problem in the current industry. To
avoid this, we need to remove certain segments of the curve which start and end
at self-intersections [29/70)]. Special methods for the case of interior offsets (as
used in milling holes or pockets) can be found in [29] and [57]. In the case of sur-
faces, the scenario is, by large, much more complicated: singularities at a point
can arise when the distance d of the smallest value of the principal curvature is
attained at the point. In addition, these singularities can be of many different
types: cusps, sharp edges or self-intersections [21]. Finally, the set of rational
curves and surfaces is not closed under offsetting [I8]. Therefore, considerable
attention has been paid to identify the curves and surfaces which admit ratio-
nal offsets [22/6964]. The case of polynomial and rational curves with rational
offsets is analyzed in [48]. We also recommend [50] for a more recent overview
of offset curves and surfaces.
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Other recent developments are geodesic offsets [55] and general offsets, first
introduced in [7] and extended in [65]. Both kinds of offsets exhibit applications
in manufacture. For example, geodesic offset curves are used to generate tool
paths on a part for zig-zag finishing using 3-axis machining (see Section [2:5)
with ball-end cutter so that the scallop-height (the cusp height of the material
removed by the cutter) will become constant. This leads to a significant reduction
in size of the cutter location data and hence in the machining time. On the other
hand, not only ball-end but also cylindrical and toroidal cutters are used in 3-
axis NC machining. When the center of the ball-end cutter moves along the
offset surface, the reference point on the cylindrical and toroidal cutters move
along the general offset.

2.5 NC Milling

Numerical controlled (NC) milling technology is a process where a rotating cutter
is sequentially moved along prescribed tool paths in order to manufacture a free-
form surface from raw stock. NC milling is an essential tool for manufacturing
free-form surfaces. For example, dies and injection molds for automobile parts
are manufactured by using milling machines, which can be classified as a function
of the number of axis in two (used to cut holes [29/57]), two-and-one-half, three,
four and five axis (to mill free-form surfaces) (see [34], Chapter 16). These tasks
have given rise to a number of different problems [44], such as those related
to the determination of the milling coordinates and axis relative to the desired
surface depending on the type of milling, transformation of control curves to
machine coordinates, displacement of the tool along special surface curves or
collision checking, etc. In general, these problems can be summarized as the
determination of which parts of the surface are effected as the milling tool moves.

At first sight, two different approaches for the simulation of the process can
be considered [25]: the exact, analytical approach [41l80] (which is computa-
tionally expensive) and the approximation approach. The cost of the simulation
for the first approach (when using Constructive Solid Geometry) is reported to
be O(n*) (n being the number of tool movements) by O(n) for the approxima-
tion approach [38]. Since a complex NC program might consist of ten thousand
movements, the first approach is computationally unapproachable and only ap-
proximate techniques are applied [32l36/37/38//72].

2.6 Implicitization

In the last years, implicit representations are being used more frequently in
CAGD, allowing a better treatment of several problems. As one example, the
point classification problem is easily solved with the implicit representation: it
consists of a simple evaluation of the implicit functions. This is useful in many
applications, as solid modeling for mechanical parts, for example, where points
must be defined inside or outside the boundaries of an object, or for calculating
intersections of free-form curves and surfaces (see Section 23)). Through implicit
representation, the problem is reduced to a trivial sign test. Other advantages are
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that the class of implicit surfaces is closed under such operations as offsetting,
blending and bisecting. In other words, the offset (see Section [24]) of an alge-
braic curve (surface) is again an algebraic curve (surface) and so on. In addition,
the intersection (see Section 23) of two algebraic surfaces is an algebraic curve.
Furthermore, the implicit representation offers surfaces of desired smoothness
with the lowest possible degree. Finally, the implicit representation is more gen-
eral than the rational parametric one [30]. All these advantages explain why the
implicit equation of a geometric object is of importance in practical problems.

Implicitization is the process of determining the implicit equation of a para-
metrically defined curve or surface. One remarkable fact is that this parametric-
implicit conversion is always possible [TTJ75]. Therefore, for any parametric curve
or surface there exists an implicit polynomial equation defining exactly the same
curve or surface. The corresponding algorithm for curves is given in [73] and [74].
In addition, a parametric curve of degree n has an implicit equation of also de-
gree n. Further, the coefficients of this implicit equation are obtained from those
of the parametric form by using only multiplication, addition and subtraction,
so conversion can be performed through symbolic computation, with no numer-
ical error introduced. Implicitization algorithms also exist for surfaces [5173]
74]. However, a triangular parametric surface patch of degree n has an implicit
equation of degree n?. Similarly, a tensor product parametric patch of degree
(m,n) has an implicit equation of degree 2mn. For example, a bicubic patch has
an implicit equation of degree 18 with 1330 terms!!!

In general, the implicitization algorithms are based on resultants, a classical
technique [71], Grobner bases techniques [§] and on the Wu-Ritt method [89].
Resultants provide a set of techniques [39] for eliminating variables from systems
of nonlinear equations. However, the derived implicit equation may have extra-
neous factors: for example, surfaces can exhibit additional sheets. On the other
hand, symbolic computation required to obtain the implicit expression exceeds
the resources in space and time, although parallel computation might, at least
partially, solve this problem. On the other hand, given an initial set of two or
three polynomials defining the parametric curve or surface as a basis for an ideal
[80], the Grébner basis will be such that it contains the implicit form of the curve
or surface. In the rational case, additional polynomials are needed to account
for the possibility of base points [40]. Finally, the Wu-Ritt method consists of
transforming the initial set into a triangular system of polynomials. This trans-
formation involves rewriting the polynomials using pseudo-division and adding
the remainders to the set. The reader is referred to [39] and [89] for more details.
With respect to implementation, hybrid symbolic/numerical methods have been
proposed in [52]. Also, in [3T] atractive speed-ups for Grobner based implicitiza-
tion using numerical and algebraic techniques have been obtained.

Finally, we remark that implicitization can be seen as a particular case of
conversion between different curve or surface forms (see, for example, [83/84]).
See also [33] (and references therein) for a survey on approximate conversion
between Bézier and B-spline surfaces, which are also applied to offsets.
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