Generic Multicast Transport Services:
Router Support for Multicast Applications

Brad Cain! and Don Towsley?

! Network Research, Nortel Networks
Billerica, MA 01821, USA
bcain@nortelnetworks.com
2 Department of Computer Science, University of Massachusetts,
Ambherst MA 00103, USA
towsley@cs.umass.edu

Abstract. The development of scalable end-to-end multicast protocols
is a tremendous challenge because of the problems in feedback implosion
and transmission isolation. In this paper we describe a set of simple
services, called Generic Multicast Transport Services (GMTS), which are
implemented in routers for the purpose of assisting the scalability of end-
to-end multicast protocols. GMTS provides a rich set of filtering and
aggregation functions that support feedback suppression and sub-tree
multicast operations which are desirable for many multicast transport
protocols. We describe the GMTS architecture, the set of services, and
provide examples of how the services can be used to support reliable
multicast, repair services, anycasting, and multicast congestion control.

1 Introduction

The development of scalable end-to-end multicast protocols poses a tremendous
challenge to network protocol designers. For example the development of reliable
multicast protocols has received considerable attention in recent years. Most pro-
tocols are based on an end-to-end solution [26[11] and have found the problem
of scaling to 1000s or even 100s of receivers daunting. The primary obstacles to
the development of scalable protocols have been feedback implosion and trans-
mission isolation. The first of these concerns the difficulty for a large multicast
application to limit feedback from receivers to a data source or to each other.
The second concerns the difficulty of limiting the transmission of data to the
subset of a multicast group that requires it.

There have been several proposals for adding functionality to routers for
the purpose of improving the performance of multicast applications, particu-
larly reliable multicast. Papadopoulos and Parulkar [§] introduced additional
forwarding functionality to a router which would allow each router to identify
a special outgoing interface over which to transmit a particular class of packets.
They showed how this turning point functionality could be used to improve the
performance of reliable multicast protocols. Levine and Garcia-Luna-Aceves [5]
proposed the addition of routing labels to routing tables which could be used

G. Pujolle et al. (Eds.): NETWORKING 2000, LNCS 1815, pp. 108-[19] 2000.
© Springer-Verlag Berlin Heidelberg 2000

Router Support for Multicast Applications 109

to direct packets over specific interfaces. One of these, called a distance label,
was shown to be quite useful in reliable multicast for directing requests for re-
pairs to nearby repair servers. The third and, perhaps most relevant proposal
is the PGM protocol [10]. Briefly, PGM is a reliable multicast protocol which
uses negative acknowledgements (NACKs). The PGM protocol is an end-to-end
transport protocol that contains a router component which performs NACK
suppression and retransmission subcasting functionality. Our work is especially
motivated by PGM and the recognition the utility in exporting a set of flexible,
simple router-based functionality (such as was used in implementing PGM) for
the purpose of protocol design. This would simplify the design of a large class of
scalable multicast transport protocols.

In this paper, we present a set of Generic Multicast Transport Services
(GMTS) that are intended to help protocol designers deal with these two prob-
lems. These services are designed to assist in the scaling of receiver feedback in-
formation and in providing subcasting services for large multicast groups. They
consist of simple filtering and aggregation functions that reside within routers.

Signaling protocols are used from hosts to set up and invoke these services.
Briefly, a session source first initializes one or more desired services on its mul-
ticast tree using GMTS setup messages. The GMTS-capable routers on the tree
then aggregate feedback from receivers and/or isolate transmissions through the
use of filters set by either the sender or the receivers. For robustness, periodic
transmissions of setup messages on the multicast tree are used to refresh GMTS
state in the face of routing changes and other possible errors. It should be stressed
that GMTS services are only invoked for certain signaling packets; data packets
are not treated any different and will not cause any additional processing in
routers.

GMTS is not intended to provide sophisticated services which are difficult
or impossible to implement in routers. GMTS services are implemented at the
IP layer and provide unreliable best-effort services. Transport protocols which
make use of GMTS must be robust in the face of failures and the absence of
GMTS-capable routers in the network.

At a superficial level, GMTS resembles active networking. However, unlike
active networking proposals, GMTS objects are simple and fixed (i.e. not dy-
namically uploadable modules). We feel that a small number of fixed services
which, if made available, can benefit multicast transport protocols while, at the
same time, are reasonable candidates for implementation in a router. Further-
more, GMTS objects are lightweight and contain only a small amount of state.
This is in contrast to recently proposed active repair services that have been
proposed by the active networking community, [314/9], which require the caching
of packets for the purpose of providing retransmissions.

The paper is organized as follows. In the next section, we present a simple
example of how GMTS can be used the context of a reliable multicast transport
protocol. Section Blintroduces the generic transport services architecture. Section
Al describes a GMTS object, its state and methods, which is the fundamental
building blocks for a GMTS session. Applications to the development of multicast

110 B. Cain and D. Towsley

transport protocols are given in Section bl The contributions of the paper are
summarized in Section

2 A GMTS Example: Reliable Multicast

Before describing the details of GMTS, we present a simple example in the
context of a PGM-like reliable multicast protocol. A more detailed description
of a reliable multicast protocol based on forward error correction (FEC) can be
found in Section (.11

Consider a NACK-based reliable multicast protocol which places the respon-
sibility of packet loss detection on each receiver. Each time that a receiver detects
a loss (based on a gap in the sequence numbers of the packets that it receives),
it unicasts a request for a repair (NAK) to the sender. Upon receipt of a NAK
for a specific packet, the sender retransmits the packet to all receivers.

This protocol faces considerable challenges in dealing with multiple NAKs for
the same packet. First, there is the problem of the sender having to process many
NAKSs. Second, there is the problem of limiting the number of retransmissions
to the same packet. GMTS can be used to (partially) solve these two problems.
Prior to the transfer of any data, the application sets up a NAK aggregation
object at each GMTS-capable router using an setup messages. This object is
set up to suppress NAKs for the same packet. In addition, the router maintains
information regarding the interfaces over which it has received NAKs so that
it can subcast the retransmission own the portion of the multicast tree that
contains receivers requiring a retransmission of the packet.

In Figure [l we show how GMTS can be used to aggregate feedback informa-
tion in a reliable multicast transport protocol. In this figure, a multicast source
(Src 1) is transmitting to two receivers (Rec 1 and Rec 2). The data packets
from Src 1 are treated as regular multicast packets and forwarding accordingly.
On the link between router R1 and router R2, a data packet is lost. Assuming
a NAK based reliable multicast protocol, this loss will cause the receivers to
send a NAK to the source for the data that was lost. In the example, receivers
use GMTS to send the feedback (i.e. the NAKSs) to the source. GMTS router
R2 treats these NAKs in a special manner, suppressing the redundant NAKs
to the source. Therefore, only one NAK arrives at the source. We can see from
this example that GMTS routers only certain types of packets require additional
processing at GMTS routers and that the majority of end-to-end packets are for-
warded according to normal multicast forwarding rules (i.e. without additional
router processing).

3 Generic Multicast Transport Services

A GMTS session is instantiated by a multicast sender and operates over (unre-
liable) TP multicast. A GMTS session, identified by source and group address,
consists of objects located in GMTS-capable routers on the multicast tree con-
necting the source to the receivers. A set of signaling protocols serve as the

Router Support for Multicast Applications 111

R2
Suppresses ga[a Pz;cket
Duplicate roppe

Feedback

\GMTS MIP
+ (NACK)

GMTS MIP
(NACK)

Rec Rec
1 2

Fig. 1. Example of network support for transport protocols.

interface to GMTS objects and are used to initiate objects and to invoke object
methods remotely. If a multicast application contains more than one sender, a
GMTS session is established for each of them.

GMTS methods are only invoked for certain types of signaling packets gener-
ated by an end-to-end multicast protocol; most data packets are sent end-to-end
as regular multicast packets and are not treated specially by GMTS-capable
routers. For example, in a reliable multicast transport protocol, NAKs would
be trapped by GMTS-capable routers while regular data packets would flow
through the normal router forwarding path. We stress this to show that GMTS
does not incur significant overhead in multicast routers as only periodic signaling
packets are specially processed.

In this section, we provide a high-level description of the objects, the signaling
mechanisms, and illustrate how these components can be combined through a
simple example.

3.1 GMTS Objects

Many GMTS services (i.e. feedback suppression) require that routers keep a cer-
tain amount of state in order to provide those services. The relationship between
services and the state required for these services is analogous to the relationship
between object-oriented classes and their methods. It is for this reason that we
we use object-oriented programming terminology to define a GMTS object. A
GMTS object is a set of methods (i.e. the actual GMTS services) and their
associated supporting state which exist in routers on a multicast tree.

GMTS objects are the fundamental components which provide a fixed set of
simple services through their methods. GMTS objects consist of state-dependent
filtering methods, the state required for these filters, and methods for modifying
this state. GMTS objects are very flexible in that they can support a rich set of

112 B. Cain and D. Towsley

filters and state manipulation functions. In the paper, we illustrate the flexibility
of these objects by illustrating their use in supporting an FEC-based reliable
multicast protocol similar to PGM [10], end-host based repair services, multicast
congestion control, and anycast.

GMTS objects are instantiations of available GMTS object types. A GMTS
object consists of state variables and several methods that can be remotely
invoked by either a source or a receiver. GMTS object types are predefined; that
is, they are fixed specifications that are implemented in router software. The
primary goal of these object types is to be able to set up and tear down simple
filtering mechanisms that can be used by the routers to reduce the amount of
end-to-end control traffic generated within a multicast session. GMTS objects
the actual per session instantiations of available GMTS object types.

GMTS objects and their methods are accessed via two signaling mechanisms.
The first is the mechanism used to set up and refresh GMTS object state. State
set up packets (SSPs) are used to set up objects and refresh their state. GMTS
method invocation packets (MIPs) are used to invoke GMTS methods.

Because of our adherence to the soft-state philosophy, a timer is associated
with each object. This timer is set at the time that the object is first initialized
(i.e., the time that the router first receives a set up packet (SSP) listing that
object), and reset each time that the router receives an additional SSP listing
that object. If the timer expires prior to the receipt of a new set up packet, the
object is deleted at the router. GMTS objects may have additional soft-state
timers as required by the object. For example a NAK suppression object, as
might be used in a reliable multicast protocol, would maintain a timer with the
state associated with a particular sequence number.

GMTS object methods may be invoked on the multicast tree in either a
reliable or an unreliable manner. Each set up packet contains a list of objects for
which the sender wishes to instantiate (or to refresh the state for). Optionally,
a sender may list options for methods specifying which methods will require
reliable or unreliable delivery. For a reliable method, a GMTS router will verify
the receipt of a MIP to the next hop GMTS router. For an unreliable method,
a router will only transmit the MIP once to next hop GMTS router. Details can
be found in [1J.

GMTS object methods also include access rights for each method stating
whether the sender, receiver, or both may invoke a given method. The GMTS
sender may set access rights to all objects.

3.2 GMTS State Setup Packets

A state setup packet (SSP) declares objects to be set up in GMTS capable
routers along a multicast forwarding tree. An SSP is multicast by the sender to
its multicast group. As it traverses the multicast distribution tree, it is trapped
by all GMTS-capable routers. Each router then creates objects corresponding to
the object type declared within the SSP. An SSP can also be used to refresh an
object, as will be discussed later, and to describe particular options for objects.

Router Support for Multicast Applications 113

The second purpose of the SSP is to inform a GMTS router of the address
of the next upstream GMTS router. This is used to allow GMTS sessions to
traverse regions of non-GMTS capable routers. We define the GMTS tree as the
tree of GMTS capable routers along the multicast forwarding tree.

GMTS must be robust in the face of network topology changes. Another use
of a SSP is to refresh GMTS state and to re-instantiate it when the network
topology changes. SSPs are sent periodically so that, in the event of a routing
change, GMTS state will be set up along the new multicast routing tree.

3.3 GMTS Method Invocation Packet

The sender and receivers use a second signaling mechanism to remotely invoke
methods on objects residing in GMTS routers. It consists of the transfer of
method invocation packets (MIPs) which identify the methods to be invoked
along with their required parameters. In addition, a MIP may include actual
end-to-end data.

MIPs are primarily used by receivers to invoke object methods. These meth-
ods typically perform some kind of state or control message aggregation. Senders
may also invoke methods. For example, a receiver might invoke a method to sup-
press NAKs during a reliable multicast session. A sender might invoke a method
in order to change the timeout value of a GMTS object. Methods flowing toward
receivers are always multicast. Methods flowing towards the source are always
unicast between GMTS-capable routers.

The particular end-system protocol using GMTS needs to map GMTS ser-
vices into its own set of variables. GMTS routers have no knowledge of the
function of a particular piece of data on which a method is invoked. In order
to provide an agnostic view of an end-system protocol to routers, we introduce
GMTS identifiers. A GMTS identifier is associated with a particular object in-
stantiation. It is used by an end-system protocol to map protocol specific data
to GMTS objects. For example, a NAK based reliable multicast protocol may
create an identifier for its sequence number space.

To a GMTS capable router, an identifier associates an incoming packet with
an object. MIP packets contain both an identifier and a method. A router then
looks up the object using the identifier and applies the particular method to
the packet. In order to make GMTS available to all types of protocols, routers
have no knowledge of the mapping between objects and end-system protocol
parameters. The source of GMTS SSP packets creates identifiers for each object
that it wishes to create.

Figure Pl illustrates the behavior of a GMTS router when presented with a
MIP and with a non-GMTS packet. The first packet is a GMTS MIP, which
causes a router to perform special processing on the packet. This packet, for
example, would contain end-to-end protocol signaling or would be a special data
packet with special forwarding rules (e.g. subcasting). The second packet is a
regular multicast data packet which was sourced from either a non-GMTS session
or GMTS session. As stated earlier, GMTS sessions use regular multicast packets

114 B. Cain and D. Towsley

\ Session (SlGl) Lo VSVEVSSiOVFIV(VSZ,VGVZj :

: © | Control

Plane

B e —— :

GMTS MIP /4
— k}—} —p-
n
>
Data Packet Forwarding

Plane

Fig. 2. Paths that data packets and MIPs take through a GMTS router.

for the bulk of their data. These packets are forwarded normally, and without
latency cost according to multicast forwarding rules.

We show two GMTS sessions within a router, identified by their tree forward-
ing entries. The first session, identified by the (S1, G1) forwarding entry has one
object with identifier three. As the GMTS MIP packet traverses the router, it
invokes a particular method (method 11) on object 3. In most cases, the MIP
would contain signaling feedback or be a special data packet to be subcasted. In
the second session, two objects of differing types are shown; in this case, a host
is using services provided from two different object types.

3.4 GMTS Operation
The following describes the steps required in setting up a GMTS session:

1. The transport protocol designer decides which services will be needed by the
protocol. GMTS services are chosen to achieve end-to-end scalable signaling
for a multicast transport protocol. The services required of the end-to-end
protocol dictate what objects to set up.

2. The transport protocol sender multicasts GMTS SSPs to instantiate the

objects desired by the protocol (Figure). An SSP contains a list of all

objects desired, their types, identifiers, and timeout values.

SSPs are periodically issued to refresh objects.

SSPs inform receivers of the identifiers to use for the instantiated objects

5. Receivers (or senders) issue MIPs which cause methods to be invoked on the
multicast tree. MIPs contain an object identifier and the method ID that
they wish to invoke. Figure 2 illustrates the rightmost receiver sending a
MIP towards the source. Observe that it is unicast between GMTS routers.

>

4 GMTS General Purpose Object (GPO)

In this section we describe a general purpose GMTS object (GPO) type that
provides a rich set of services to end-system multicast protocols. The GPO con-
tains several methods providing a set of core services useful to protocol designers
and are reasonable for implementation in routers. These include:

Router Support for Multicast Applications 115

: source
@ GMTS router
kM
sSSP () Non-GMTS
) router

receivers

Fig. 3. Operation of GMTS.

Table 1. Private variables for the GMTS General Purpose Object.

Private Variable Description
Name
start_window, Lowest and highest allowable sequence numbers on
end_window which methods may be invoked.
state state(t) identifies the sequence state for sequence number 3.
inter face_vector (1) inter face_vector(i) is vector of state for all
interfaces marked for sequence number 7.
object_expiration_timer,| Timers for object and sequence state
state_expiration_timer

— Suppression: simple feedback suppression towards a source.

— Predicate Suppression: suppression of redundant feedback based on the
boolean result of one or more comparison operations.

— Subcasting: the ability to forward a packet to a subset of the multicast
forwarding tree.

4.1 Sequence Space

Many end-to-end multicast protocols use a sequence space. In order to apply
suppression type operations per sequence state (i.e. NAK suppression), the GPO
includes a large sequence number space which can be used to identify a set of
state. Sequence numbers can represent many different parameters in multicast
transport protocols. This sequence number is used to reference all state in the
GPO. The private variables associated with the GPO are listed in Table [[
start_window and end_window specify a range of sequence numbers which
are currently valid and for which state is kept. Associated with sequence num-
ber i are two state variables. The first, state(i) is a nonnegative integer. The
second, inter face_vector(i) is a vector which contains as many integer valued
components as outgoing interfaces at the router, including the one towards the

116 B. Cain and D. Towsley

sender. As we will observe shortly, this vector is used to determine the interfaces
over which receiver and sender initiated methods are to be invoked.

4.2 Methods

Methods are used for state maintenance and the actual GMTS services. GPO
methods are listed in Table[2 and described briefly below.

The modi fy_window method to update the GPO sequence number window.
All state associated with sequence numbers outside the new window is discarded.
clear_state, is used to clear state within the range defined by start_range and
end_range. modify_state, explicitly sets the state associated with a sequence
number.

Consider rcvr_update(n,v,pred, fs, fy). If pred(v,state(n)) is true, then
state(n) := fs(v, state(n)) and inter face_vector(n) = f, (v, inter face_vector(n),
vec) where vec is the vector of all Os except for a one in the position correspond-
ing to the interface over which the method was invoked, If state(n) has changed,
then the rcor_update method is invoked on the link directed towards the source
with v = state(n), and all other arguments unchanged. Otherwise, nothing oc-
curs. It is expected that a receiver will normally invoke this method.

Method mcast_update(n, v, pred, fs, f,), behaves in a similar manner except
that, whenever the predicate is true, the method is invoked on all outgoing links
that are part of the multicast tree except the one that it arrived over. Note
that the MIP containing mcast_update is multicast over all outgoing links in the
routing table and unicast on the outgoing link on the path to the next upstream
GMTS router on the path towards the source associated with the GMTS session.

Last, forward(n,v, gs, g», data) results in the invocation of the same method
on the routers attached to all outgoing interfaces (except the one that the original
invocation arrived on) for which the corresponding components in
inter face_vector(n) are greater than v. In addition, state(n) := gs(v, state(n))
and inter face_vector(n) := g,(v,inter face_vector(n)). Upon receipt by a re-
ceiver, the parameters data, state, and n are delivered to the application.

In addition, there are timers associated with each individual state component
and with the object itself. state_expiration_timer, and object_expiration_timer
contain the values they are set to when initialized. They can be reset using
set_object_timer and set_state_timer.

4.3 Predicates and Operations

A number of methods require the specification of a predicate used to determine
if state should be modified. If the application of the predicate is true, the given
operations are performed. The functions fs() and f,() are used to modify the
sequence state and the interface vector function. Examples can be found in [IJ.

Router Support for Multicast Applications 117

Table 2. Methods for a GPO.

lMethod Name ‘Arguments‘Method Description

modi fy_window|start, end |Modify sequence window

rcur_update n, v, Usually invoked by receiver to invoke suppression
pred, fs, |or election based on predicate pred. If TRUE,
fo set state with fs() and interface vector by fy,().
clear_state start, end |Clears all sequence state in the provided range.
forward n, v, Usually invoked by sender to allow
Jss Gu, transmission of data on interface k such that
data inter faces_vector(k) — value > 0.

State and interface vectors set using
gs() and g, (). data is included in the MIP.

mcast_update |n, v, Similar to the rcvr_update method except MIP
pred, fs, |is multicast on all interfaces on tree
fo except one it arrived on.

modi fy_object |v Set the object timer to timer_value.

_timer

modify_state |n, v Set the sequence number state timer to timer_value.

_timer

5 Examples

We present two examples of protocols constructed using the general purpose ob-
ject. These are a receiver oriented reliable multicast protocol using forward error
correction (FEC) and a protocol that can aid in providing scalable congestion
control to a multicast session. Other examples are found in [I].

5.1 A Reliable Multicast Protocol with FEC

FEC has been shown to be especially effective in the implementation of reli-
able multicast, [7]. Consequently, in this section we describe a receiver oriented
protocol that uses FEC to reduce the number of retransmission requests. The
design is similar to that of PGM [10]. However, the purpose of this exercise is
not to develop new protocol but to illustrate the flexibility of GMTS.

Briefly, data is grouped into blocks consisting of Bg;.. packets. Each time
that a receiver detects that it has not received all of the packets in a particular
block, it forwards a request for a number of parity packets equal to the number
of missing packets. Upon receipt of this request, a GMTS-capable router checks
to see if an earlier request for at least as many parity packets has already passed
through for this data block. If so, the parity request (PR) is discarded. If there
has been no previous request for as many parity packets, then the request is
forwarded towards the source. In either case, a record is made of the number
of parity packets required to be sent down the interface over which the parity
request arrived.

118 B. Cain and D. Towsley

The source creates parity packets in response to a parity request and sends
them down the tree to the receivers. Each GMTS router sends as many parity
packets over each outgoing interface as has been recorded for that block.

This protocol uses a single object at each router to perform feedback sup-
pression and parity transmission subcasting. The sender maintains the following
state:

1. Block sequence number window (nstart, Nend); this corresponds to the blocks
which the sender is prepared to create parity packets for.

Sequence number for the next block to be transmitted, n,ex¢.

Timer for clocking SSPs.

Maximum parity sequence number for block j, P, (j) corresponding to
maximum number of parities requested for block j; initially set to zero.

D

Each receiver maintains

1. Block sequence numbers of packets received in last previously multicast se-
quence number window.

2. Parity request (PR) suppression timer for block j. T}, (j),

3. PR loss detection timer for block 5, Tjsss(J)-

4. Number of parities required to recover missing packets belonging to block j,
Ro(j).

Initialization: The source periodically multicasts an SSP which declares a
GPO, its timeout, and the start and end of the sequence window.
Data transfer: Data packets are multicast in blocks of size By, to the group.
Unique sequence numbers commencing with ng4,+ are used to identify the blocks.
They are incremented at the transmission of each new block. In addition, each
packet has a unique sequence number in the range (0, Bs;..—1). The receivers use
these sequence numbers to identify packets unsuccessfully received for each block.
Last, these packets require no GMTS support. Therefore, they are transmitted
as non-GMTS packets. They traverse the fast path illustrated in Figure 21
Repair requests: When a receiver detects a loss within block j, it sets a parity
request counter Ry, (j) to the number of missing packets and the PR suppression
timer. If the timer goes off, the receiver increments R, (j) by the number of ad-
ditional packets missing from block j and invokes rcvr_update with v = R,,,.(5),
fs(z,y) = z, and f,(a,v1,v2) = max(vi,a * ve) at the first upstream GMTS
router. The PR loss detection timer is also set. If the missing packets for block
j or a PR for block j containing a value greater than Ry, (j) arrive while the
suppression timer is set, the timer is turned off. In the case of receipt of a repair
request, the RR loss detection timer is still set. Last, if the PR loss detection
timer goes off, then the process is repeated.
Parity transmission: When the sender receives a PR packet for block j re-
questing v parities where v > Pp,q.(j), it constructs v — Py,4.(j) new parity
packets for block j and invokes the forward method to send them towards the
receivers. The sender updates P,,q.(j) to v and invokes the forward method with
n=j,v=0,gs =x—1, g, = inter face_vectors(n), and the appropriate parity
packet as parameters.

Variations of this protocol are described in [I]

Router Support for Multicast Applications 119

5.2 Congestion Control

Several congestion control protocols require knowledge of the worst case receiver
according to some metric such as loss rate, p. This is easily accommodated in the
GMTS framework by setting up a suppression object and having the receivers
periodically invoke the rcvr_update method up the tree. The largest receiver loss
rate would propagate up the tree and the routers would establish a path between
the source and the receiver that generated this value.

6 Summary and Future Work

GMTS provides an architecture for the development of simple services in routers
that assist control message scalability problems in end-to-end multicast proto-
cols. We have shown how GMTS can be used to complement an end-to-end
reliable multicast protocol.

We continue to investigate further services that may be useful to a vari-
ety of multicast protocols and applications. Of particular interest is the area of
congestion control and RTCP like reporting functions. Last, we are in the pro-
cess of adding GMTS to a Linux-based router for the purpose of evaluating its
performance and the benefits provided to multicast applications.

References

1. B. Cain, D. Towsley. “Generic Multicast Transport Services: Router Support for
Multicast Applications,” UMass Computer Department Technical Report TR99-
74, Nov. 1999.

2. S. Floyd, V. Jacobson, S. McCanne, C. Lin, L. Zhang. “A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing”, IEEE/ACM
Tran.s on Networking, 5, pp. 784-803, Dec. 1997.

3. S. Kasera, J. Kurose, D. Towsley. “A Comparison of Server-Based and Receiver-
Based Local Recovery Approaches for Scalable Reliable Multicast”, Proc. INFO-
COM’98, 1998.

4. L.H. Lehman, S.J. Garland, D. L. Tennenhouse. “Active Reliable Multicast”, Proc.
INFOCOM’98, 1998.

5. B.N. Levine, J.J. Garcia-Luna-Aceves. “Improving Internet Multicast with Routing
Labels”, Proc. ICNP-97, pp. 241-250, Oct. 1997.

6. J. Lin, S. Paul. “RMTP: A reliable multicast transport protocol”, Proc. of IEEE
INFOCOM’95, 1995.

7. J. Nonnenmacher, E. Biersack, D. Towsley. “Parity-Based Loss Recovery for Reli-
able Multicast Transmission”, IEEE/ACM Trans. on Networking, Aug. 1998.

8. C. Papadoulos, G. Parulkar. “An Error Control Scheme for Large-Scale Multicast
Applications”, Proc. INFOCOM’98.

9. D. Rubenstein, S. Kasera, D. Towsley, J. Kurose. “Improving Reliable Multicast
Using Active Parity Encoding Services (APES)”, Proc. INFOCOM’99.

10. T. Speakman, D. Farinacci, S. Lin, A. Tweedly. "PGM Reliable Transport Proto-
col”, IETF <draft-speakman-pgm-spec-02.txt>, August, 1998.

11. D. Towsley, J. Kurose, S. Pingali. “A comparison of sender-initiated and receiver-
intitiated reliable multicast protocols” IEEE JSAC, April 1997.

	Introduction
	A GMTS Example: Reliable Multicast
	Generic Multicast Transport Services
	GMTS Objects
	GMTS State Setup Packets
	GMTS Method Invocation Packet
	GMTS Operation

	GMTS General Purpose Object (GPO)
	Sequence Space
	Methods
	Predicates and Operations

	Examples
	A Reliable Multicast Protocol with FEC
	Congestion Control

	Summary and Future Work

