
An Algorithm for Multicast with Multiple QoS

Constraints and Dynamic Membership

Aiguo Fei and Mario Gerla

Network Research Lab, Department of Computer Science

University of California, Los Angeles, CA 90095, USA

fafei,gerlag@cs.ucla.edu

Abstract. In this paper we present an algorithm to construct low-cost

source trees for multicast with multiple QoS constraints and dynamic

membership. Assuming the availability of link-state information, a join

path is computed for a new joining multicast receiver. An algebraic for-

mulation is introduced to show how to determine if the QoS requirements

for a new receiver can be satis�ed at an intermediate node along the join

path and how to adjust the tree without breaking QoS requirements for

existing members if they are not. Our scheme builds multicast tree incre-

mentally and thus supports fully dynamic membership. It also supports

heterogeneous receivers seamlessly. Moreover, our algorithm can support

any number of arbitrary QoS metrics without assuming any dependen-

cies among them, if they satisfy some normal mathematical property. If

implemented in a distributed fashion, our approach doesn't require any

node to have explicit knowledge of the multicast tree topology, thus it

scales well for multicast of large group. Simulation studies have been

carried out to study the behavior of our algorithm and compare its per-

formance with other schemes.

1 Introduction

In multicast[3], data packets are distributed through a tree structure. A central
task in multicasting is to build such a distribution tree (the routing problem).
Over the years, many multicast routing algorithms and protocols had been pro-
posed and developed. Several routing protocols had been standardized or are in
the process of being standardized by IETF[11, 4] for IP networks, and some of
them had been deployed and used on the experimental MBone and some Internet
Service Providers'(ISP) networks[11].

In recent years, great e�ort has been undertaken to introduce and incorporate
quality of service(QoS) into data communication networks such as ATM and IP
networks[6]. Many multicast applications, such as video conferencing, multime-
dia broadcasting, and distance-learing, are QoS-sensitive in nature, thus they
will all bene�t from the QoS support of the underlying networks. The new chal-
lenge is how to build a multicast tree (or multiple trees) to deliver the multicast
data from source (or sources) to all receivers so that QoS requirements satis�ed
and the cost of the multicast tree(s) and/or network resources demanded are

G. Pujolle et al. (Eds.): NETWORKING 2000, LNCS 1815, pp. 132-143, 2000
 Springer-Verlag Berlin Heidelberg 2000



minimized. This problem is NP-complete in general[8] as a constrained Steiner
tree problem.

A number of multicast routing algorithms that are QoS-aware have been pro-
posed. Most of these algorithms are \static" algorithms in the sense that they
need explicit knowledge of all group members[9, 14]. For many such algorithms
it is di�cult and expensive for members to dynamically join the group since
this usually requires a re-computation of the whole tree. Morever, most of them
are not designed to handle heterogeneous receivers (di�erent receivers have dif-
ferent QoS requirements), or multiple QoS constraints. On the other hand, a
\dynamic" routing algorithm will build the multicast tree through joining of
group members one by one. When a new member joins, the routing algorithm
doesn't reconstruct the whole tree, instead it would try to connect the new re-
ceiver to an existing tree member without a�ecting existing group members. It
might be harder for such type of algorithms to produce a globally-optimized
multicast tree (in terms of cost), but they are necessary for some applications
that have frequent membership dynamics. We anticipate both types of multicast
algorithms are needed to support di�erent types of applications.

In this paper, we propose an incremental algorithm to support multicast with
dynamic membership and multiple QoS constraints. Assuming the availability
of information about the global network (as in an OSPF environment in IP
networks), a join route is computed when a new member joins. Our algorithm
speci�es how this new member would be connected to the existing multicast tree
without breaking QoS requirements for existing members and how the existing
tree would be adjusted if necessary. The algorithm tries to minimize the total cost
of the tree by computing a low-cost join path for new members utilizing a QoS
unicast routing algorithm. It supports arbitrary number of QoS metrics, dynamic
group membership and heterogeneous receivers. It also has good scalability if
implemented in a distributed fashion.

The rest of this paper is organized as follows. Section 2 presents network
model and some related work. Sections 3 introduces classi�cation of QoS met-
rics and de�nitions necessary for the presentation of the algorithm. Section 4
describes the algorithm, followed by simulation results in section 5. We conclude
our paper with a short summary as section 6.

2 Network Model and Related Work

Most existing QoS multicast routing algorithms have real-time applications in
mind and have end-to-end delay as the QoS constraint needed to be satis�ed.
The network is modeled as a connected graph G(V;E), where V is a set of
vertices(nodes) and E is a set of edges(links). For any edge e 2 E, d(e) is the
delay and c(e) is the associated cost. One of the node is a tra�c source. End-to-
end delay on a path from the source to a destination is the summation of d(e)
for all edge e on the path. The goal is to bound the end-to-end delay on paths
from the source to all destinations and minimize the total cost of the tree (as a
summation of c(e) for all e 2 T where T is the multicast tree). In IP networks,

133An Algorithm for Multicast with Multiple QoS Constraints



a source(receiver) node would be a router which has end-user computer in its
subnet as a tra�c source(receiver) of the multicast group. A survey of those
algorithms can be found in [2], and some performance evaluation can be found
in [12].

Many centralized multiple-metric(e.g. cost and delay) heuristic algorithms
are variations of the well-known single-metric algorithms: Shortest Path Tree(SPT)
that optimizes delay from source to all destinations, and Minimum Cost Span-
ning Tree(MCST) that minimizes the total cost of the tree. The one proposed
by V. Kompella et al. in [9] is based on Prim's minimum spanning tree algo-
rithm. In this algorithm, a tree grows from the source, when selecting a new
node to join the tree, instead of picking the node connecting to the existing
tree via a minimum-cost link, it selects a link that minimizes a given selec-
tion function. Another centralized heuristic is Bounded Shortest Multicast Al-
gorithms(BSMA[14]), which starts with an SPT and then replaces some paths in
the tree with non-tree paths without breaking the delay constraint but of lower
cost. Distributed version of Kompella's algorithm can be found in [10].

As mentioned earlier, most of these algorithms have three main drawbacks:
they are not designed to support dynamic membership, they don't consider het-
erogeneous receivers, and they are di�cult to be extended to handle multiple
constraints (i.e., jitter and loss in addition to delay). These are the problems our
algorithm intends to address.

3 QoS Metrics Classi�cation and De�nitions

QM(R1 ! R2 ! R3) = QM(R1 ! R2) �QM(R2 ! R3)

R3R2R1

QM(R1 ! R2) QM(R2 ! R3)

Fig. 1. Concatenation of paths.

Let Ri denote a network node. Consider the concatenation of a path from R1

to R2 and a path from R2 to R3 to make up a path from R1 to R3. Consider a
QoS metric, say, QM , which is a function of the path. We have QM(R1 ! R2),
QM(R2 ! R3) and QM(R1 ! R3), where Ri ! Rj denotes a speci�c path
from Ri to Rj , and R1 ! R3 refers to the path concatenated by paths R1 ! R2

and R2 ! R3. In general, QM(R1 ! R3) is a function of the complete path
from R1 to R3. However, for some metric QM , QM(R1 ! R3) only depends on
QM(R1 ! R2) and QM(R2 ! R3). For example, delay D(Ri ! Rj) is such a
metric,

D(R1 ! R2 ! R3) = D(R1 ! R2) +D(R2 ! R3): (1)

134 A. Fei and M. Gerla



To be general, we can de�ne an operator � on QM such that,

QM(R1 ! R3) = QM(R1 ! R2)�QM(R2 ! R3): (2)

Delay is a metric that obeys the regular addition(+) operation, we call such
a metric as an additive QoS metric. Number of hops is another example of
additive metrics. Generally delay jitter is also considered to be additive. We call
a metric a transitive QoS metric if it has the operator � de�ned as:

t1 � t2 = min[t1; t2]: (3)

or,

t1 � t2 = max[t1; t2]: (4)

To simplify our discussion, from now on, we consider only transitive metric
de�ned by the min operator, which is often called concave metric in literature.
Available bandwidth of a path is a transitive metric, e.g., BW (R1 ! R3) =
min[BW (R1 ! R3); BW (R2 ! R3)].

We call a metric amultiplicative QoS metric if it has the operaotr � de�ned
as:

m1 �m2 = m1 �m2: (5)

If one de�nes reliability r as r = 1� loss rate, then r is a multiplicative metric.
On the other hand, if loss rate L on all link is considered small enough such that
L(R1 ! R3) = L(R1 ! R2) + L(R2 ! R3), then loss rate L can be considered
as an additive metric.

Consider a path from S to D that has a QoS descriptor denoted as QD =<
a1; ::; ana ; t1; ::; tnt ; m1; ::;mnm >, where ai is an additive QoS metric for the
path, tj is a transitive metric and mk is a multiplicative metric; na, nt, nm are
number of additive, transitive and multiplicative metrics respectively. To make a
meaningful problem, we assume ai � 0 for any additive metric ai and 0 < mi � 1
for any multiplicative metric mi. Consider a QoS requirement QR, which can
be denoted in the same way as a QoS descriptor, QR =< a

0

1
; ::; a

0

na
; t

0

1
; ::; t

0

nt
;

m
0

1
; ::;m

0

nm
>. We de�ne the � operator between QR and QD (and between two

QD's) as

QR � QD =

(
true if a

0

i � ai; t
0

j � tj and m
0

k � mk for all i; j; k

false otherwise:
(6)

We say a QoS requirement QR is satis�ed by the path S ! D with QoS descriptor

QD if QR � QD.
We can also de�ne the � operator between two QD's as

QD �QD
0

=< ::; xi � x
0

i; :: >; i runs over all valid members; (7)

where QoS descriptor QD =< ::; xi; :: > and QD
0

=< ::; x
0

i; :: >. For a path
R1 ! R2 ! R3, QD(R1 ! R2 ! R3) = QD(R1 ! R2)�QD(R1 ! R3).

135An Algorithm for Multicast with Multiple QoS Constraints



Consider network nodes S and D and an intermediate node I , the path
S ! I has QoS descriptor QD(S ! I) and the path I ! D has QoS descriptor
QD(I ! D), we have:
Lemma 1. A QoS requirement QR is satis�ed by the path S ! I ! D if
QR � QD(S ! I)�QD(I ! D).

To simplify future discussion, if QR � QD, we de�ne a 	 operator between
them as

QR	QD =< :::; a0

i � ai; :::; t
0

j ; :::;m
0

k=mk; ::: >; (8)

where QR =< :::; a0

i; :::; t
0

j ; :::;m
0

k; ::: >, and QD =< :::; ai; :::; tj ; :::;mk; ::: >.
The 	 operator is only de�ned between a QR and a QD, and the result is a new
QoS requirement. It is not de�ned if !(QR � QD).

These operators de�ned above obey similar rules as regular arithmetic oper-
ators, e.g., if QR	QD2 � QD1 then QR � QD1 �QD2, and vice versa. Thus
we have:
Lemma 2. Given QoS requirement QR, a path S ! I with QD(S ! I) and
a path I ! D with QD(I ! D), QR is satis�ed by the path S ! I ! D if
QR � QD(I ! D) and QR	QD(I ! D) � QD(S ! I).

We also introduce a max operator on two QoS descriptors as

max[QD;QD0] =< :::;min[ai; a
0

i]; :::;max[tj ; t
0

j ]; :::;max[mk;m
0

k]; ::: >; (9)

where QoS descriptor QD =< :::; ai; :::; tj ; :::;mk; ::: > and QD0 =< :::; a0

i; :::; t
0

j ;
:::;m0

k; ::: >, and ai(a
0

i) is an additive metric, tj(t
0

j) is a transit metric and
mk(m

0

k) is a multiplicative metric. Intuitively, if max operator is applied on two
QoS requirements, the result is a new QoS requirement which is at least as strict
as both of the old requirements for any metric. Similarly we can de�ne a min
operator. By de�nition, we have
Lemma 3. If max[QR1; QR2] � QD, then both QR1 � QD and QR2 � QD.

We now make modi�cations to the multicast tree construction problem in
Section 2: instead of delay d(e), each edge e 2 E now has QoS characteristics
QD(e); for the path (in the multicast tree) from s to a destination t, it has
to satisfy the QoS requirement s.t. QR(t) � QD(s ! t) where QD(s ! t) =P

ei
QD(ei) for all ei on the path s! t.

4 The Algorithm

4.1 Assumptions and Messages

We assume any QoS metric(requirement) needed to be considered is of one type
of those de�ned above. In this section we describe how our algorithm work in a
distributed fashion, the pseudo code for the algorithm can be found in[5]. We also
assume the availability of link-state information at each node and a QoS-capable
unicast routing algorithm.

136 A. Fei and M. Gerla



Similar to PIM-SM(Protocol Independent Multicast Sparse Mode[4]), we as-
sume a node keeps forwarding information such as source/group, incoming link
and set of outgoing link(s). When a new member(receiver) wants to join the
group, it sends an explicit Join request towards the source. Additionally, in a
forwarding entry, each outgoing link is labeled as active or pending. Multicast
tra�c is only forwarded to outgoing link(s) marked as active. Two additional
types of messages required are Accept noti�cation and Deny noti�cation.
When the Join request is accepted(denied) at some node, an Accept(Deny) no-
ti�cation is sent downstream towards the new receiver. Accept noti�cation will
change the corresponding pending 
ags to active while a Deny noti�cation will
clear those pending entries. When a member leaves a group, it sends Prune
message upstream as in PIM-SM. Additionally, through periodic(or triggered)
QoS Probing messages from the source (or intermediate nodes), any node
in the multicast tree will keep track of QoS characteristics (such as bandwidth
reserved, delay, delay jitter and loss, depending on the QoS metrics concerned)
on the current path in the multicast tree from the source to that node.

4.2 Algorithm Description

When a new receiver(say, R3) wants to join the multicast group with QoS re-
quirement QR(R3), it computes a join path utilizing the available link-state
information and a QoS unicast routing algorithm. It then sends a Join message
carrying the join path information towards the source.

An intermediate node will forward the Join mes-

QD(R1->R3)

QD(S->R1)

��
��
��
��

�
�
�

�
�
�

S

R1

R2 R3

Fig. 2. Join request re-

ceived by an intermedi-

ate node R1.

sage. It also stamps in the message the QoS charac-
teristics of the link from which the message received,
so that when a node(say, R1) receives the Join mes-
sage from R3, the QoS characteristics on the reverse
direction of the path it traveled so far is available as
QD(R1 ! R3). If the node receiving the message is not
already in the tree, it creates a new multicast forward-
ing entry (group/source, in-link, out-link, destination).
The out-link is the link from which it receives the mes-
sage and the in-link is the link to which it should for-
ward the message based on route information carried

in the message. It then stamps in the Join message the QoS characteristics for
the link from which it received the message and forwards that message to the
next hop. It also marks the newly created routing entry as \pending" and starts
a timer. The routing entry will be marked as active (route pinning) when an
Accept message is received. The Accept message is then forwarded downstream.
A \pending" routing entry is 
ushed if its timer goes o�.

When a node receives a Join message and it is already part of the multicast
distribution tree, say, node R1 in Fig.2 (where S is the source), it will check
current QoS characteristics QD(S ! R1) and QoS requirements QR(R3) and
QoS characteristicsQD(R1 ! R3). If QR(R3) � QD(S ! R1)�QD(R1! R3),
by Lemma 1, QoS requirement for new receiver R3 is satis�ed by the path

137An Algorithm for Multicast with Multiple QoS Constraints



S ! R1 ! R3, then the Join request can be accepted at node R1. This is as
illustrated in Fig.2. In Fig.2 and others to follow, a black node is an in-tree node
of the multicast group, non-�lled node (R3) is the new joining receiver and a
gray node may or may not be an in-tree node. A solid line represents an existing
multicast forwarding path and a dashed line represents the path on which the
Join request is sent. Multicast packets will be forwarded on the reverse direction
of the dashed line if the Join request succeeds. Under the situation illustrated
in Fig.2, the Join request is accepted at router R1. No additional forwarding is
required.

If this is not true, there are two possibilities: (1)the

QD(S->R1)R0

QD(R1->R3)
R1

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

S

R2 R3
����
����
����
����
����

����
����
����
����
����

Fig. 3. !(QR(R3) �

QD(S ! R1) �

QD(R1! R3)).

immediate upstream node R0 of R1 is the next hop
speci�ed by the Join request, (2)the next hop speci�ed
in the Join request is not R0. In the �rst case, R1 can
simply add the interface from which it received the
Join request to the corresponding multicast routing
entry and mark it as pending, and then forward the
request to R0, which may accept the Join request or
forward it further. This is illustrated in Fig.3.

In the latter case, the action to be taken by R1 is
described as follows, which also has two possibilities:
(1)QD(S ! R1) � QR(R3) 	QD(R1 ! R3), (2)con-
dition (1) is not satis�ed. In the �rst case, let R0 be the
next hop speci�ed by the Join request, if the Join request is accepted on the new
join path S ! R0 ! R1, then QR(R3)	QD(R1 ! R3) � QD(S ! R0 ! R1),
thus the path S ! R0 ! R1 ! R2 will also satisfy the QoS requirements for any
downstream node R2 of R1 by Lemma 2, since we will have QR(R2)	QD(R1 !

R2) � QD(S ! R1) and QD(S ! R1) � QD(S ! R0 ! R1). So R1 will
forward Join request to R0, and mark it as the preferred immediate upstream
node. When an Accept message is received later, a QoS probing message is also
generated with the current QoS characteristics QD(S ! R1) and multicasted
to downstream nodes to trigger QD update. Pruning message is to be sent to
its original parent node R0 to prune itself o� from the old branch once multi-
cast tra�c comes down from R0. This is illustrated in Fig.4. In the latter case
(!(QD(S ! R1) � QR(R3)	QD(R1 ! R3))), R1 can compute a new join path
with max[QD(S ! R1); QR(R3)	QD(R1 ! R3)] as the QoS requirement. In
such a path can be found, QoS requirements for both R3 and existing down-
stream nodes of R1 can be satis�ed by Lemma 3 and Lemma 2. Thus R1 can
send a Join request to setup that new path; once it succeeds, R1 can accept the
Join request from R3 and switch to the new path. If such a path couldn't be
found, then R1 should reject the Join request. This is illustrated in Fig.5.

From the above description, it is easy see that:
Theorem 1. If a Join request is accepted, then the new member's QoS require-
ment is guaranteed to be met without breaking QoS requirement of any existing
member.

138 A. Fei and M. Gerla



QD(S->R0->R1)

QD(S->R’->R1)

QD(R1->R3)

��
��
��

��
��
��

��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

����
����
����
����
����

����
����
����
����
����

S

R2 R3

R1

R0
R’

��
��
��

��
��
��

Fig. 4. !(QR(R3) � QD(S !
R1)�QD(R1! R3)), QD(S !
R1) � QR(R3) 	 QD(R1 !

R3).

QD(S->R1)

QD(R1->R3)

max[QD(S->R1), QR(R3)-QD(R1->R3)]
��
��
��

��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

����
����
����
����
����

����
����
����
����
����

��
��
��

��
��
��

S

R2 R3

R1

R0 R’

�
�
�

�
�
�

Fig. 5. !(QR(R3) � QD(S ! R1) � QD(R1 !
R3)), and !(QD(S ! R1) � QR(R3)	QD(R1 !

R3)).

4.3 QoS Unicast Algorithms

Our algorithm relies on some available QoS unicast routing algorithm to compute
join paths. It has been proved that, the shortest-path (or the min-cost path)
problem subject to one or more additive or multiplicative constraints is NP-
complete[7]. A number of polynomial-time heuristics have been proposed and
studied [2]. In our simulation study, we use a simple greedy heuristic based on
Bellman-Ford algorithm, more details and pseudo code can be found in [5]. This
algorithm can be easily extended to handle multiple constraints and its time
complexity is O(jV jjEj). Of course it does not guarantee a solution even if one
exists, due to the NP-completeness nature of the problem.

4.4 Complexity Analysis

Let n = jV j and M = jEj. At worst case, along the path for a new member to
join the existing multicast tree, every intermediate node may need to compute
a new join path, so we have:
Lemma 4. The computation complexity for a new member to join the group
is O(hf(n;M)) at worst case, where f(n;M) is the complexity of the unicast
algorithm applied and h is the number of hops of the path.

Lemma 4 gives:
Theorem 2. The total complexity to setup a multicast group ofmmembers with
our algorithm is O(mhmaxf(n;M)) at worst case, where hmax is the maximum
number of hops of paths and hmax < n.

Algorithms mentioned in section 2 all assumed uniform QoS requirements
for all members and only considered delay constraint. To compare our algorithm
with them, we have to assume the same conditions:
Lemma 5. If there is only one uniform single additive or multiplicative met-
ric constraint (in addition to a cost-minimization objective), the computation
complexity for a new member to join the group is O(f(n;M) + n), in a cen-
tralized implementation and in a distributed implementation assuming accurate
link-state information (e.g., no stale information).

139An Algorithm for Multicast with Multiple QoS Constraints



Proof: See [5].
Following Lemma 5, we have:

Theorem 3. When there is a single constraint of an additive or multiplicative
metric, the total complexity to setup a multicast group of m members with our
algorithm is O(mf(n;M) +mn).

Using a constrained unicast routing algorithm with complexity f(n;M) =
O(nM) as mentioned earlier, our algorithm could build a multicast tree of m
members with complexity O(mnM). In most realistic networks,M = O(n), thus
the complexity is O(mn2). Table 1 gives a complexity comparison with several
other algorithms:

Table 1. Comparison of computation complexity to build a multicast tree, us-
ing a O(nM) unicast algorithm and assuming jEj = O(jV j). For centralized
algorithms, it assumed that all group members are known in advance and the
algorithms build trees for all members at once.

algorithm complexity
our algorithm O(mn2)
SPT (centralized) O(nlogn)
SPT (distributed) O(mnlogn)
Kompella's(centralized) O(n3)
BSMA(centralized) O(n3logn)

5 Simulation Results

Simulation has been used to study the behavior of our algorithm and to com-
pare its performance with other schemes. In our �rst set of simulations, uniform
bandwidth and delay constraints are considered, so we an compare our scheme
with others. Three other algorithms are simulated: SPT(Shortest Path Tree) al-
gorithm (single metric on delay), Kompella's algorithm([9]), and a greedy algo-
rithm[1]. In the greedy algorithm, each time a node joins the group, it computes a
delay-bounded min-cost path to all members in the existing tree. Then it chooses
the one with lowest cost. The unicast QoS routing algorithm used for our algo-
rithm is a delay-bounded min-cost heuristic algorithm based on Bellman-Ford
algorithm[5].

We use randomly generated networks using the approach given in [13]. In
simulations presented here, networks have a �xed size of 60 nodes chosen over a
30� 30 grid. Parameters are chosen such that in average each node has a degree
of 4 or 5. Geometric distance is used as delay on a link. To be as general as
possible, a random cost between 0 to 1 is generated for each link. For simplicity,
links are assumed to be bi-directional and symmetric. Furthermore, all links are
assumed to have enough bandwidth, so bandwidth is not explicitly considered
in the simulation.

Two sets of results for the comparison are shown here in Figure 6 (a) and
(b). Each point in the �gures represent the average from 100 instances. For
each instance, we randomly pick a node as source node and a given number of

140 A. Fei and M. Gerla



2
3
4
5
6
7
8
9

10
11

25 30 35 40 45 50 55 60

T
re

e 
C

os
t

Delay Bound
(a)

SPT
Kompella’s

ours
Greedy

0

2

4

6

8

10

12

14

16

5 10 15 20 25

T
re

e 
C

os
t

Group Size
(b)

SPT
Kompella’s

ours
Greedy

Fig. 6. (a)Tree cost vs. delay bound with �xed group size (=15); (b)Tree cost vs. group
size with �xed delay bound(=40).

other nodes as receivers. In SPT and Kompella's algorithm, a tree is built for
all members. In our algorithm and greedy algorithm, nodes join the group one
by one in a random order. Fig.6(a) shows the tree cost vs. delay bound with
�xed group size 15. Fig.6(b) shows the results for experiments with a �xed delay
bound 40 and group size ranging from 5 to 25.

2

2.5

3

3.5

4

4.5

5

5.5

6

30 35 40 45 50 55 60 65 70 75 80

(a)

Tree Cost vs. Delay Bound

L=1.8%
L=2.0%
L=2.3%
L=2.6%
L=3.0%

0

2

4

6

8

10

5 10 15 20 25 30

(b)

Tree Cost vs. Group Size (L=2.0%)

D=35
D=40
D=45
D=50
D=60

0

2

4

6

8

10

5 10 15 20 25 30

(c)

Tree Cost vs. Group Size (L=4.0%)

D=35
D=40
D=45
D=50
D=60

0

2

4

6

8

10

5 10 15 20 25 30

(d)

Tree Cost vs. Group Size (D=50)

L=1.5%
L=1.8%
L=2.0%
L=2.5%
L=3.0%

Fig. 7. Tree cost with varied delay bounds (D) and loss probability bounds (L).

As one can see, SPT always builds trees of higher cost than all others and
almost don't change any with di�erent delay. This is not surprising since SPT
only builds a tree based on a single delay metric and makes no attempt to

141An Algorithm for Multicast with Multiple QoS Constraints



optimize the tree in terms of cost. Of the remaining schemes, greedy algorithm
always produce the lowest-cost tree. This is expected since it requires much more
computation than others. Our algorithm works between Kompella's and greedy
algorithms. Fig.6(a) shows all the three algorithms indeed can reduce the tree
cost when delay bound is relaxed. In Fig.6(b), when group size grows, the cost
of trees produced by all three algorithms increases at a rate lower than SPT. In
summary, Kompella's, greedy and our algorithm produce trees of similar costs.
However, compared with Kompella's algorithm, ours has the advantage of being
fully distributed and allowing incremental tree build-up to accommodate dy-
namic joining members. Though greedy algorithm has the advantage of slightly
lower cost, it is much more costly in terms of computation overhead.

To show our algorithm is e�ective when there are more than one constraint,
we generate networks with one more random number(from 0 to 1%) associated
with each link as loss probability. Such random loss can be considered to be
caused by various reasons (transmission error, lossy wireless links, etc.). Be-
cause of the real-time nature of the applications, retransmission is not feasible
and so we want to bound the total loss probability. Fig.7(a) shows tree cost vs.
delay bound, similar to Fig.6(a), but now di�erent curves are for di�erent loss
probability bounds. All curves have the same trend of decreasing with the re-
laxation of delay bound, as in Fig.6(a). It also shows that when loss probability
bound is relaxed, the tree cost decreases along with. Fig.7(b),(c) and (d) present
tree cost vs. group size with varied delay bounds and loss probability bounds.
Fig.7(b) shows curves for di�erent delay bounds with a �xed loss probability
bound, Fig.7(c) shows curves of the same group of delay bounds but with a dif-
ferent �xed loss probability bound. Both demonstrate lower tree cost for more
relaxed delay bound. Fig.7(c) has a more relaxed loss probability bound than
(b), so one can see that each tree cost in (c) is lower than that in (b) with same
group size and delay bound. Fig.7(d) shows a similar group of curves with a
�xed delay bound but varied loss probability bounds. All these show that our
algorithm is e�ective in lowering tree cost when it is allowed by the constraints.

6 Conclusions

In this paper, we have presented an incremental multicast tree construction
algorithm. Assuming network information available at each node, it is possi-
ble to incrementally grow the tree through dynamic joining of group members.
Our algorithm builds low-cost tree by utilizing unicast algorithm to compute
a minimum-cost join path. Our algorithm speci�es how to the adjust the tree
when necessary to accommodate the QoS constraints of new members without
breaking QoS of existing members, thus enhances the possibility of new member
being accepted without recomputing the whole tree. In addition to its distributed
nature and dynamic membership support, our mechanism can support heteroge-
neous receivers with any number of QoS metrics without any inter-metric depen-
dency assumptions. Moreover, since a node doesn't need any explicit knowledge
of existing receivers when it computes a join path, there is no requirement for

142 A. Fei and M. Gerla



any node to maintain multicast tree topology information. Thus our approach

can scale well to support multicast with large number of participants. Simula-

tion results for delay-constrained multicast cast show that it has performance

comparable to that of other schemes in terms of tree cost but with lower com-

putation complexity. Additional simulation shows it performs consistently with

more constraints. The key contribution of our work is an algorithm capable of

handling multiple QoS constraints and supporting heterogeneous receivers with

dynamic memberships.

References

1. D. Cavendish, A. Fei, M. Gerla, and R. Rom. On the maintenance of low cost mul-
ticast trees with bandwidth reservation. In Internet Mini-Conference with Glob-
com98, Australia, 1998.

2. S. Chen, and K. Klara. An overview of quality of service routing for next-generation
high-speed networks: problems and solutions. In IEEE Network Magazine, pp.64-
79, November/December 1998.

3. C. Diot, W Dabbous, and J. Crowcroft. Multipoint communication: a survey of
protocols, functions, and mechanisms. In IEEE Journal on Selected Areas in Com-
munications, Vol.15(3), pp.277-290, April 1997.

4. S. Deering, D. Estrin, D. Farinacci, et al.. Protocol independent multicast-sparse
mode (PIM-SM): motivation and architecture. Internet draft: draft-ietf-idmr-pim-
arch-05.txtfpsg, August 1998.

5. A. Fei, and M. Gerla. Receiver-initiated multicasting with multiple QoS con-
straints. Technical Report No.990043, Department of Computer Science, UCLA,
1999.

6. P. Ferguson and G. Huston. Quality of Service, John Wiley & Sons, Inc., 1998.
7. M. Garey, and D. Johnson. Computers and Intractability, a Guide to the Theory

of NP-Completeness, W.H. Freeman and Company, New York, 1979.
8. F. Hwang, D. Richards, and P. Winter. The Steiner Tree Problem, North-Holland,

1992.
9. V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast routing for multime-

dia communication. In IEEE/ACM Transactions on Networking, Vol.1(3), pp.286-
292, June 1993.

10. V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Two distributed algorithms for
the constrained Steiner tree problem. In Proceedings of Computer Communication
Networking, June 1993.

11. D. Kosiur. IP Multicasting. John Wiley & Sons, Inc., 1998.
12. H. Salama, D. S. Reeves, and Y. Viniotis. Evaluation of multicast routing algo-

rithms for real-time communications on high-speed networks. In IEEE Journal of
Selected Areas in Communications, Vol.15(3), pp.332-344, April 1997.

13. B. M. Waxman. Routing of multipoint connections. In IEEE Journal of Selected
Areas in Communications, Vol.6(9), pp.1617-1622, December 1988.

14. Q. Zhu, M. Parsa, and J. Garcia-Luna-Aceves. A source-based algorithm for delay-
constrained minimum-cost multicasting. In Proceeedings of IEEE Infocom'95,
pp.377-385, 1995.

143An Algorithm for Multicast with Multiple QoS Constraints


	1 Introduction
	2 Network Model and Related Work
	3 QoS Metrics Classi cation and De nitions
	4 The Algorithm
	4.1 Assumptions and Messages
	4.2 Algorithm Description
	4.3 QoS Unicast Algorithms
	4.4 Complexity Analysis

	5 Simulation Results
	6 Conclusions
	References

