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Abstract. Group multicast routing problem (GMRP) is a generalization of
multicasting whereby every member of the group is allowed to multicast
messages to other members from the same group. The routing problem in this
case involves the construction of a set of low cost multicast trees with
bandwidth requirements for all the group members in the network. The
traditional solutions only care for the low cost of multicast trees and sometimes
the algorithms will fail during the construction due to the inefficiency of the
bandwidth allocation. In this paper we study the feasible solutions to GMRP by
proposing a new algorithm to improve the success rate of constructing multicast
trees. Simulation results show that our new algorithm performed better in terms
of bandwidth utilization and success rate of building multicast trees compared
with existing algorithms.

1 Introduction

Nowadays most of the network applications require large amount of bandwidth to
deliver multimedia information to multiple destinations simultaneously. One possible
way to meet this requirement is via multicast communication. Multicasting allows a
source to send information to multiple destinations through a network at the same
time. Multicast routing can be solved by building multicast trees over the network
topology, and transmit data from the source to all the destinations. A least cost
multicast tree is referred to as a Steiner tree. The problem of finding a Steiner tree has
been proved to be NP-complete by [4].

   Group Multicast Routing Problem (GMRP) is a generalization of multicast
routing whereby each member node from a group may multicast data to all other
members from the same group, i.e. each member node being both an information
source and destination. A typical example is that of remote teleconferencing in which
every participant is able to send out messages and receive information presented by
other group participants concurrently. It can be easily inferred that group multicasting
will need higher bandwidth resources than the corresponding “single source”
multicast routing.
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One possible solution to group multicast routing problem is to use Core Based Tree
(CBT) technology [1] with only one shared tree generated, rooting at the
“multicasting core” and spans to all the group member nodes with minimal cost.
However, using CBT will result in side effects such as network congestion on some
tree edges connected to the “core” because data from each source will have to traverse
these edges. Too large delay variation is another problem of using CBT algorithm. An
alternative method is to create one Steiner tree for each source separately, as [5] and
[9] have proposed. However, one common deficiency of the two algorithms lies in the
unbalanced data concentration throughout the network. Edges with low cost are
always burdened with high traffic loading while other edges are seldom utilized.
Extremely, since the two greedy algorithms always select low cost edges to build
multicast trees, there exists the situation that the bandwidth of some critical edges are
used up and the network becomes disconnected, thus resulting in the failure of the tree
construction.

In this paper, we propose a new routing algorithm for group multicast routing
problem called Feasible Solutions using adapted TM algorithm for GMRP (FTM).
Our main goal is to provide better distribution of data in the network and more
important, lower tree failure rate.  The new heuristic is based on the adaptation of the
TM algorithm by H. Takahashi and A. Matsuyama [11]. Extensive simulations are
carried out to compare the performance of our proposed algorithm with the traditional
algorithms concerning the tree failure rate, variance of traffic loading and the edge
saturation which can be used to demonstrate data distribution in the network.

2 Problem Formulation

Generally the network is modeled as a directed graph G (V, E) with node set V (|V|=n)
and edge set E. Each edge (i, j) ∈ E has two parameters, namely available bandwidth
bij and cost cij. We assume that the available bandwidth on each edge is asymmetric

in general, i.e. bij may not be equal to bji. For each edge (i,j), bij is known as the input

bandwidth from node i to node j. For simplicity, we assume that the cost of each edge
(i,j) is symmetric, i.e.  cij = cji

 
. However, our proposed algorithm can be easily adapted

to the case in which the cost of each edge is asymmetric. Let P(u,v) denote the
shortest path (in terms of cost) from u to v, where u,v ∈ V.

Given a network graph G=(V, E), let D = {  v1, v2, … , vm }   be a group of nodes in

G, where  D ⊂ V and |D| =m. Each node mk ∈ D has a bandwidth requirements of Bk

units.  The group D is called the multicasting group and each node in D is called a
member node. The bandwidth requirement Bk of each node in D is specified by the
user. The group multicast routing problem  (GMRP) is that of finding a set of directed
routing trees { T1, T2, ...Tm}, one for each member of group D which satisfy the

following requirements:
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   Each tree Ti =(Vi, Ei), where Vi ⊆�V and Ei ⊂�E, represents the tree rooted at

node vi ∈ D which spans all nodes in D. The tree Ti may also contains some nodes

from the set V-D, which we call the relay nodes.  We note here that all leaves nodes
in each tree Ti must be member nodes of D. Otherwise, the relay nodes and their

corresponding links can be deleted from the tree resulting in a lower cost solution.
    The first constraint ensures that the total cost of generated trees is minimized

while the second constraint is to ensure that the total bandwidth utilized on each link
does not exceed its available bandwidth. Since GMRP is the generalization of single
Steiner tree problem, it is obviously NP-complete. A set of trees {T1, T2, ...Tm}

which satisfy constraint (2) is called a feasible solution to the group multicast
routing problem, i.e., our goal is to achieve the maximum success rate of building
multicast trees. In this paper we assume that when each edge is joined into the tree,
one unit of its bandwidth will be consumed. An edge is said to be saturated if its
consumed bandwidth has reached the bandwidth capacity of this edge.

    Fig. 1 shows a network model as we have defined. The number in the middle of
the edge is cost and the numbers near the arrows at the two ends of an edge represent
the bandwidth capacity of the edge in the direction of the arrows. Note that the nodes
in gray color are relay nodes and the rest are multicasting members in the network,
i.e., D={0, 1, 2, 3}.
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Fig. 1  Network model

3 Previous Works

Single source based multicast routing with minimum cost is referred to as the Steiner
tree problem. L. Kou, G. Markowsky and L. Berman proposed a heuristic algorithm
called KMB algorithm to achieve the close-to-optimal solutions [8]. The KMB
algorithm begins by computing shortest paths between each pair of member nodes.
Following that, the closure graph G’ which contains only nodes in D is constructed.
The closure graph G’ is one in which each node in D is connected to all other nodes in
D by the shortest paths. Thus, each edge (a,b) in the closure graph correspond to a
shortest path between nodes a and b in the original graph G. The next step is to
construct minimum spanning tree of G’. A greedy approach is employed to add edges
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to the partial tree until all member nodes in D are included. In each iteration of this
approach, a least cost edge that connects a node in the partial tree to one that is not in
the partial tree is selected to be joined. Once the tree is constructed, all edges in the
tree are expanded into the shortest paths which they represent in the original network.

   H. Takahashi and A. Matsuyama proposed TM algorithm [11] by computing the
shortest paths from all the nodes in the network to every group members. Empirical
study [9] showed that TM algorithm performs better than KMB according to total cost
due to its more powerful capacity of explore shortest paths. When one member node
is about to join into the Steiner tree, not only the shortest paths from the member
nodes already in the tree but also those from some relay nodes can be obtained to
build the Steiner tree.

   According to the problem of group multicast routing, multicast tree will be built
on each of the member nodes and the bandwidth requirement is taken into
consideration. Jia and Wang [5] first proposed a heuristic algorithm, which we call Jia
& Wang’s Algorithm, which adopts some form of coordinated strategy called
overhead comparison to generate a set of multicast trees. Their algorithm is based on
an adaptation of KMB Steiner tree heuristic. Later on anther heuristic called Group
multicast routing with adapted TM algorithm (GTM, [9]) was proposed. As we have
mentioned above, due to the more powerful capacity of TM algorithm to explore
shortest paths, GTM correspondingly provides better performance in total cost than
Jia & Wang’s algorithm.  Moreover, GTM also obtains lower tree failure rate
compared with Jia & Wang’s algorithm [9].

    It should be noted that the problem of finding multicast tree with minimum cost
is NP-complete [4], being a generalization of this problem, none of the solutions to
GMRP we have mentioned can find the optimal solution in polynomial time. We have
also found that even if there exist some solutions to building multicast tree for each
group member in the network, cases are that neither Jia & Wang’s algorithm nor
GTM can find any. In this paper, we will mainly focus on how to achieve the
maximum success rate of building a set of multicast trees, i.e., if there do exist
solutions to the problem, our proposed algorithm can always find out at least one that
is feasible.

4 Proposed Algorithm

4.1 Breadth First Search (BFS) Tree

Observe GTM and other similar algorithms which adopt greedy strategy to build
multicast trees, edges with low cost are in higher priority to be selected each time so
that those edges also having low bandwidth capacity could be consumed up and
become saturated before all the multicast trees are generated. If unfortunately some
critical edges are unavailable in the network, all the group members are not located in
one connected sub-graph, the algorithm fails. One sufficient condition to prevent the
network from being disconnected is to guarantee that there are no saturated edges in
the network. Based on the above analysis, FTM always finds edges with large
bandwidth capacity to build multicast trees. Following this scenario, we first find the
“widest” path from all the nodes to every group members, as TM algorithm deals with
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cost in the network.  To achieve this, we use breadth first search (BFS) to detect the
paths with maximum bandwidth capacity to the group members. One BFS tree is built
rooted at each multicasting group member and contains the widest path from all the
other nodes in the graph. When each of the nodes is visited during BFS procedure, the
edges from all its neighbors (except its predecessor) to the node itself are examined,
and the one with maximum bandwidth capacity is selected, with the corresponding
neighbor included into the search tree. At the same time, the bandwidth bottleneck
and the total cost of the path to the root is also recorded. If there are two or more
neighbors connected by the edges with the same bandwidth capacity, the one with
least cost is chosen. In order to implement the breadth first search, a queue is used to
accommodate the nodes to be visited. Fig. 2 shows how the BFS tree is generated for
node 0 in the graph given by Fig. 1. Notice that the two numbers in the bracket
represent the total cost and bandwidth bottleneck of the path from this node to node 0
respectively.

   Starting from node 0, since the two of its neighbors node 1 and node 4 have
never been visited, they are joined into the BFS tree with bandwidth bottleneck 3 and
1 respectively as Fig 2(a) shows. Next we come to examine node 1’s neighbors. Node
5 is joined into the BFS tree by connecting node 1, its bottleneck to the source is
min(bottleneck[1], b(5,1)), which is also 3. As to node 4, min(bottleneck[1], b(4,1)) is
1, the same with bottleneck[4], however the total cost of path 4Å1Å0 is 34 which is
greater than the cost of edge(4,1), so node 4 is remained directly connecting to node
0.  After all of node 1’s neighbors have been visited, we come to examine node 4’s
neighbors. Since the bottleneck of both node 1 and node 5 are greater than that of
node 4, they remain unchanged. As to node 2, since it has never been visited, it is
joined into the tree by connecting to node 4 (Fig. 2(b)). Then we will come to check
node 5’s neighbors. Node 3 will be added into the BFS tree with its bottleneck being
min(bottleneck[5], b(3,5))=3 (Fig. 2(c)). Since min(bottleneck[5], b(4,5))=3 is greater
than bottleneck[4], node 4 will switch its path from node 0 to node 5, also notice that
the path cost and bottleneck of it current successor node 2 will also be updated to 82
and 3 respectively, as Fig. 2(d) illustrates. Next the neighbors of node 2 are visited.
Since the path 3Å2Å4Å5Å1Å0 and 3Å5Å1Å0 have the same bandwidth
bottleneck while the cost of the latter is smaller, node 3 will not switch its connection
from node 5 to node 2. Finally the neighbors of 3 are checked and we can find that
there is no need to modify any connections. After the breadth first search is finished,
Fig. 2(d) is the final BFS tree for node 0 with the records of the bandwidth bottleneck
and total cost of the paths from all the other nodes to the root.

4.2 Necessary Conditions for Existence of Feasible Solutions.

While the problem of finding feasible solutions for GMRP is NP-complete, there
exists some criteria which could be used to determine if a feasible solution does exists
for a given problem instance. Two of such criteria are given in the following lemma.
Here we still assume that one unit of bandwidth is consumed when each edge is
included in the multicast tree.

Lemma:  There is no feasible solution for GMRP if :
(i)  all member nodes do not belong to the same connected component; or
(ii)   the total input bandwidth capacity for some  member node v is less than m-1.
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Fig. 2 Generation of BFS tree rooted at node 0

Proof: A feasible solution for GMRP is comprised of a set of multicast
trees { Tu,  : u ∈ D }. Each tree Tu is rooted at member u ∈ D and spans all other
member nodes in the network. If member nodes are located in two or more
components, then it would not be possible to construct a multicast tree that connects
one member node to all other member nodes in the network. It follows then that
criteria (i) is a necessary condition for the existence of feasible solutions for GMRP.

   In any feasible solution, each member node v will be receiving information from
the other m-1 member nodes via m-1 multicast trees Tu , for each u ∈ D – {v}. Thus,
the total input bandwidth of each member node must be at least m-1.

   This lemma can be used as an early-abort test to determine in advance if a
feasible solution exists before attempting to find any solutions for GMRP.

4.3 Feasible Solution to GMRP

After m BFS trees are built rooted at each of the group members, the detail
information of the widest path from all the other nodes to this group member is
available. Similar to the TM algorithm, our next step is to build multicast trees for the
group members based on the path information obtained by BFS procedure. It should
be noted that bandwidth is a concave metric in the network model, i.e., the bandwidth
capacity of a path is decided by the edge with minimum available bandwidth along
this path. Since the bandwidth bottleneck of the path is recorded in BFS procedure,
we will use the path with maximum bandwidth bottleneck to join all the group
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members into the current multicast tree. Different from TM algorithm, in this step
paths are selected according to the bandwidth bottleneck instead of the edge cost. Of
course, if two or more paths with the same bandwidth bottleneck are found at the
same time, the one with least cost is selected. Fig. 3 gives out the psudocode of the
feasible solution to GMRP.
____________________________________________________________________________
Procedure BFS:
Input: graph G(V, E), source;
Output: Maximum bandwidth path to source;
   begin
       for i=1 to n do                                                                                                             /*   Initialization   */
         if ( i<>source ) then
          node[i].visited=0;
          distance[i]=infinitive;  bottleneck[i]=-1; predecessor[i]=-1;
         else
          distance[i]=0; bottleneck[i]=infinitive; predecessor[i]=-1;
       end for;
       T=φ ;
       InitQueue(Q);

       for i=1 to n do
         if ( node[i].visited=0 ) then
             EnQueue(Q, i);
             while ( not QueueEmpty(Q) ) do
                u = DeQueue(Q);
                u.visited=1;
                for each v such that (v,u) ∈ E  do                                                            /*   Find the neighbor with
                  if ( min(bandwidth(v,u), bottleneck[u])>bottleneck[v] ) or             maximum bandwidth edge   */
                      ( min(bandwidth(v,u), bottleneck[u])=bottleneck[v] ) and
                      ( distance[v]>distance[u]+cost(v,u) ) then
                      (v,u) Å T;
                      bottleneck[v]= min(bandwidth(v,u), bottleneck[u]);                           /* Record the bandwidth
                      predecessor[v]=u;                                                                      bottleneck to the source node  */
                      distance[v]=distance[u]+cost(v,u);
                      for each w such that (v,w) ∈ T  do
                         update w’s bottleneck and distance;
                   end if;
                 for each v such that (v,u) ∈ E  do
                   if node[v].visited=0 then
                      EnQueue(Q,v);
                end while
             end if;
          end; (Procedure BFS)

          Procedure FTM
          Input: G(V,E), D;
          Output: A set of multicast trees Tv for each v ∈ D.

          begin
              if  G is not connected then stop;
              for each member node v ∈ D do                                                       /*       early-abort detection     */
                   if total input bandwidth for v <  m-1  then  stop;
              for each member ∈�D do
                  for each member i ∈�D do  BFS(G, i);

                  set Ti=(Vi, Ei), Vi={ i}, Ei=φ, copies=1;
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                  while (copies<m)
               find a path P(v, u)  where v∈Vi, u∈D-Vi, such that                              /*  Select the path with

                    ),(),( max
’,’

jibottleneckuvbottleneck
VDjVi −∈∈

=  maximum bandwidth bottlenecek   */

                    if  there exist more  than one P(v,u) with the same bottleneck   then
                          select the path with least cost;
                    Vi=Vi ∪ {all nodes in P(v, u) except v };

                    Ei =Ei ∪ {all edges in P(u,v)};

                    copies=copies+1;
                 end while
                 update bandwidth status;
           end for
         end;  (Procedure FTM)

Fig. 3 Psudocode of feasible solution to GMRP

4.4  Time Complexity Analysis

In the function of BFS, it takes O(n+e) to visit each node in the graph using breadth-
first-search where e is the number of edges in the graph. The time complexity of
visiting all the neighbors of each node is O(n) while updating the distance and
bandwidth bottleneck of successors takes O(n). Hence the time complexity of BFS is
O((n+e)n2). In the function of FTM, BFS dominates most of the computing time
when building multicast trees for each group member. On the whole, building m
multicast trees will take O(m(n+e)n2) which is actually the time complexity of our
proposed FTM algorithm.

4.5  An Example

We also take the network model shown in Fig. 1 as our example. Since node 0,1,2,3
are multicasting group members, one multicast tree will be built for each of them
respectively. First we use the traditional greedy method to solve the problem. Fig.
4(a) shows the Steiner tree rooted at node 0 with optimal total cost. However, after
tree 0 is finished, we find that edge (4, 2) and (5, 3) have been saturated, resulting in
the separation of node 2, 3 from the rest part of the graph, as shown in Fig. 4(b).
Definitely there will be no feasible solutions to building the rest of the multicast trees
due to the fact that the network has been disjoined.

In our proposed algorithm, the multicast trees are built based on the path
information provided by the BFS trees rooted at each group member. In order to
generate each multicast trees, two tables must be available: the table of bandwidth
bottleneck and the table of path cost, both of the tables are m*n in size. Fig. 5 shows
the two tables needed to build multicast tree 0. In the first table, element (i, j)
represents the bandwidth bottleneck from node (j) to group member (i) and in the
other, element (i, j) represents the total cost of the path from node (j) to group
member (i). Notice that the data in the ith row of both tables are obtained by the BFS
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tree rooted at node i.  Starting from node 0, we check the first column of table 1 and
find that among the bottlenecks of all the nodes, node 1 has the widest path to node 0
which is 6, so it is selected into the multicast tree rooted at node 0. After node 1 is
joined into the multicast tree, we find that both node 2 and node 3 have the bandwidth
bottleneck of 1 from the partially built tree which currently contains node 0 and node
1 (shown as the left-down 2 by 2 elements in table 1), so table 2 is checked and node
2 is selected into the tree by taking the path 1Å4Å2 whose cost is 22 which is less
than all the other possible paths from node 3 (58 from node 0 and 46 from node 1).
Finally node 3 is added into the multicast tree by taking the path 2Å3, as shown in
Fig. 6(a). Similarly the multicast trees rooted at the rest of the members are built as
Fig. 6(b),(c),(d) shows.
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5 Simulations

5.1 Random Graph Generation

To ensure that simulation of the effects of different routing algorithms are fairly
evaluated, random graphs with low average degrees, which better represent the
topologies of common point-to-point network, e.g. NSFNET, are constructed. The
nodes are randomly placed on a rectangular grid and nodes are connected with the
probability function:

                                             )
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where d(u,v) is the distance between node u and v and L is the maximum possible
distance between any pair of nodes. The parameters λ and ρ ranging (0,1] can be
modified to create the desired network model. For example, a large value for λ gives
nodes with a high average degree, and a small value for ρ increases the density of
shorter links relative to longer ones. In our simulation, λ and ρ are set to 0.4 and 0.2,
respectively. We use the distance between node u and v as the cost of the edge. The
bandwidth capacity of each edge is allocated using the following function:

                                                                m
k

m BrBvuB mod)1(),( ×−+=

where Bm is the given mean bandwidth while k and r are random numbers. Using this

function no bandwidth with negative value will be generated and the bandwidth
capacity of all edges will range from 1 to 2Bm - 1. Graphs are generated and tested
until member nodes are connected in a single sub-graph.
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5.2 Algorithm Performance Study

In our simulation, we will mainly compare the performance between the proposed
FTM algorithm and such  existing heuristics as Jia & Wang’s algorithm and GTM.

    First we consider the data distribution in the network. We define link loading
factor L for each edge:
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where Ne is the number of edges in the network. From definition, we can see that Lij
is actually the rate between the consumed bandwidth and the bandwidth capacity of

this edge. L  is the average loading of all edges in the network. If the variations of Lij
between each edge are small, we can draw the conclusion that the data traffic is well
distributed in the network.

    Fig. 7 shows the network loading factor over the group size. The network size is
fixed at 100 and the mean bandwidth is fixed at 30. From Fig. 7 we can see that the
network loading factor increases as the group size grows larger. This phenomenon is
expected because with the increase of the group size, not only more multicast trees
will be built, but the size of each tree will become larger. We also find that the
network loading factor of FTM is higher than that of Jia & Wang’s algorithm and
GTM by a small scale.
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    Since the network loading factor is comparable between the two algorithms, we
will continue to study the data distribution in the network by computing the variance
of loading factor δ. We define:
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where Pij  is the probability that edge (i,j) is selected into the multicast trees. Pij  can

be expressed as the number of times that edge (i,j) is selected into the multicast trees
over the total times that all edges are selected. Since one unit of bandwidth is
consumed when each edge is joined, we can express the probability with the
consumed bandwidth as the following:
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    Fig. 8 shows the variance of loading factor over group size. Notice that all the
external conditions are same as those of Fig. 7. From the figure we can see that the
variance of loading factor of FTM is significantly lower than that of the other two
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algorithms, typically when the group size is 50, variance of FTM is lower than that of
GTM by 67.9% and Jia & Wang’s algorithm by 69.2%. Since the traffic loading are
very close to each other (see Fig. 7), low traffic loading variance reflects better
distribution of data in the network. In FTM, the total traffic is evenly allocated to a
large number of network links and each of them has a moderate traffic loading. On
the contrary, edges with low cost are burdened with high traffic loading while those
with high cost are seldom utilized in Jia & Wang’s algorithm and GTM, resulting in
the unbalanced data distribution.
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Fig. 9 Saturation rate vs. mean bandwidth

Next we will study the relationship between mean bandwidth and edge saturation
rate. Edge saturation rate is defined as the number of saturated edges over the number
of all edges in the network after the algorithm terminates. Fig. 9 shows the saturation
rate over the mean bandwidth. The network size is fixed at 100 and the number of
group members is 30 while the mean bandwidth ranges from 5 to 35 in steps of 5.
From the figure we can see that all of the three algorithms have fewer saturated edges
as the mean bandwidth increases. However, the saturation rate of FTM is obviously
lower than the other two, e.g. when the given mean bandwidth is as low as 5, the edge
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saturation rate of GTM reaches 17% while that of FTM is only 1.35% under this
condition. The phenomenon can be explained by the fact that the edges with lower
bandwidth capacity have lower priority to be selected to build the multicast trees so
that the bandwidth is conserved. By studying the edge saturation condition, we can
also infer that FTM can provide better distribution of data in the network. Since the
edges with large bandwidth capacity is selected each time, their priority decreases as
the bandwidth is consumed step by step while the priority of other edges will become
higher. Following this scenario, a dynamic balance among the edge selection is
achieved and data can be more evenly distributed in the network.

   Fig. 10 shows the tree failure rate over the mean bandwidth. Similarly, the
network size is also fixed at 100 and the number of group members is 30 while the
mean bandwidth ranges from 5 to 35 in steps of 5. Observe that tree failure rate of
both algorithms converges to zero as the mean bandwidth increase. This phenomenon
is expected as the chance of finding paths with sufficient bandwidth capacity
increases as the mean bandwidth increases. From Fig. 10 we can also see that the tree
failure rate of FTM is significantly lower than that of Jia & Wang’s algorithm and
GTM. The reason for this is due to the low edge saturation rate as we have illustrated
above. When the given mean bandwidth is high, each of the edges is not easy to be
saturated. In this case, as long as all the group members are located in one connected
graph in the initial condition which we will examine before each run, the topology of
the graph won’t change if no edges are saturated and there must always exist
solutions.

                           

0

10

20

30

40

50

5 10 15 20 25 30 35
Mean bandwidth

F
ai

lu
re

 R
at

e 
(%

) Jia & Wang’s

GTM

FTM

Fig. 10 Tree failure rate vs. mean bandwidth

   As we have mentioned in Section 2, our proposed algorithm focuses on the
feasible solution to GMRP, and the factor of cost is not our main concern. As the
algorithm proceeds, only if two or more paths having the same bandwidth bottleneck
are met will we consider cost efficiency and choose one path with least cost. Fig. 11
shows the performance according to total tree cost vs. group size. From the figure we
can find that FTM has significantly higher cost than the other two greedy heuristics,
typically when the group size reaches 50, the total cost of Jia & Wang’s algorithm
and GTM are 60.9% and 56.2% that of FTM respectively. How to provide efficient
tradeoff between total tree cost and failure rate is one of the topics that our future
works will focus on.
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6 Conclusions

In this paper, we examine feasible solutions to group multicast routing problem with
bandwidth requirements. In order to provide better multicasting data distribution and
lower tree failure rate, we proposed a new algorithm called feasible solution to GMRP
using adapted TM algorithm (FTM). Results from our empirical study shows that our
new algorithm performs better in terms of data distribution and edge saturation rate
compared to other greedy algorithms. In addition, our simulations also show that
FTM has a higher percentage of success in finding solutions to GMRP due to the
efficient edge selecting strategy.

   Currently our proposed algorithm mainly concerns on the success rate of building
multicast trees in the network. Cost does not contribute much to the edge selections so
that the resulting trees are of higher cost than other greedy algorithms. In addition, the
proposed algorithm is based on a centralized fashion, i.e., the network topology is
assumed to be obtained by all the nodes in the graph, and we will later move on to the
distributed fashioned algorithms for GMRP which will be more feasible for “actual”
networks.  One of our future research directions will also focus on the network model
with guaranteed QoS and provide trade-off between success rate and tree cost.
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