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Abstract. The paper deals with tree-structured point-to-multipoint net-
works, where users from infinite user populations at the leaf nodes sub-
scribe to a variety of channels, offered by one source. The users joining the
network form dynamic multicast connections that share the network re-
sources. An exact algorithm for calculating end-to-end call blocking prob-
abilities for dynamic connections is devised for this multicast model. The
algorithm is based on the well-known algorithm for calculating blocking
probabilities in hierarchical multiservice access networks, where link oc-
cupancy distributions are alternately convolved and truncated. The re-
source sharing of multicast connections requires the modification of the
algorithm by using a new type of convolution, the OR-convolution. The
exact algorithm for end-to-end call blocking probabilities enables us to
study the accuracy of earlier results based on Reduced Load Approx-
imation. The model is further extended to include background traffic,
allowing the analysis of networks carrying mixed traffic e.g. multicast
and unicast traffic.

1 Introduction

A multicast transmission originates at a source and, opposed to a unicast trans-
mission, is replicated at various network nodes to form a tree-and-branch struc-
ture. The transmission reaches many different end-users without a separate
transmission required for each user. A multicast connection has therefore a band-
width saving nature. Blocking occurs in a network when, due to limited capacity,
at least one link on the route is not able to admit a new call. Traditional math-
ematical models to calculate blocking probabilities in tree-structured networks
exist for unicast traffic. Due to different resource usage, these models cannot
directly be used for multicast networks where requests from different users ar-
rive dynamically. Only recently, have mathematical models to calculate blocking
probabilities in multicast networks been studied.

The past research has mainly been focused on blocking probabilities in mul-
ticast capable switches. Kim [6] studied blocking probabilities in a multirate
multicast switch. Three stage switches were studied by Yang and Wang [11] and
Listanti and Veltri [7]. Stasiak and Zwierzykowski [10] studied blocking in an
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ATM node with multicast switching nodes carrying different multi-rate traffic
(unicast and multicast), using Kaufman-Roberts recursion and Reduced Load
Approximation. Admission control algorithms are studied in [9].

Chan and Geraniotis [1] have studied blocking due to finite capacity in net-
work links. They formulated a closed form expression for time blocking probabil-
ities in a network transmitting layered video signals. The model is a multipoint-
to-multipoint model. The network consists of several video sources, where each
source node can also act as a receiver. The video signals are coded into different
layers defining the quality of the video signal received by the user. The traffic
class is defined by the triplet: physical path, source node, and class of video
quality. The behavior of each user is modeled as a two state Markov chain, with
unique transition rates defined for each traffic class triplet.

Karvo et al. [3] and [4] studied blocking in a point-to-multipoint network with
only one source node. The source is called the service center and it can offer a
variety of channels, e.g. TV-channels. The users subscribing to the network may
join and leave the channel at any time. The behavior of the user population
defines the state probabilities at the links of the tree-structured network. The
user population is assumed infinite and the requests to join the network arrive
as from a Poisson process. The model studied in [3] considered the model in
a simplified case where all but one link in a network have infinite capacity.
They derived an exact algorithm to calculate both the channel and call blocking
probability in this simplified case. Extending the model to the whole network
was done only approximately in [4], where end-to-end blocking probabilities are
estimated using the Reduced Load Approximation (RLA) approach.

This paper continues with section 2, where the single link case discussed in
[3] and [4] is extended to a mathematical model for a multicast network with
any number of finite capacity links. The section is divided into five parts. First,
the notation is presented. Secondly, the model for a network with infinite link
capacities is presented and thirdly, the OR-convolution used to convolve mul-
ticast state distributions in tree networks is introduced. Then, the main result
s, an expression for the call blocking probability in a network with any number
of finite capacity links is given and finally, the algorithm to calculate the call
blocking probability is introduced. The algorithm is based on the well-known
algorithm for calculating blocking probabilities in hierarchical multiservice ac-
cess networks, where link occupancy distributions are alternately convolved and
truncated. In section 3, comparisons between the exact solution and Reduced
Load Approximation are carried through. The network model is extended to
include non-multicast traffic as background traffic in section 4. The paper is
concluded in section 5.

2 Network Model

2.1 Notation

The notation used throughout this paper is as follows. The set of all links is
denoted by J . Let U ⊂ J denote the set of leaf links. The leaf link and user
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population behind the leaf link is denoted by u ∈ U = {1, ..., U}. The set of
links on the route from leaf link u to the source is denoted by Ru. The set
of links downstream link j ∈ J including link j is denoted by Mj , while the
set of downstream links terminating at link j ∈ J are denoted by Nj . The set
of user populations downstream link j is denoted by Uj . The set of channels
offered by the source is I, with channel i = 1, .., I. Let d = {di; i ∈ I}, where
di is the capacity requirement of channel i. Here we assume that the capacity
requirements depend only on the channel, but link dependencies could also be
included into the model. The capacity of the link j is denoted by The different
sets are shown in figure 1.
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Fig. 1. An example network to show the notation used.

2.2 Network with Infinite Link Capacities

We first consider a network with all links having infinite capacity. Subscriptions
to channel i behind leaf link u arrive from an infinite user population as from
a Poisson process with intensity λu,i = αiλu, where αi is generated from a
preference distribution for channel i and λu is the arrival intensity for user
population u. The channel holding time is assumed to be generally distributed
with mean 1/µi. In addition we denote the traffic intensity au,i = αiλu/µi.
Let the pair (u, i) ∈ U × I denote a traffic class also called a connection. The
connection state, which may be off or on, is denoted by Xu,i ∈ {0, 1}. It is
shown in [3] that in a multicast network with all links having infinite capacity,
the distribution of the number of users simultaneously connected to channel i
is the distribution of the number of customers in an M/G/∞ queue. The state
probability for a connection, is therefore

πu,i(xu,i) = P (Xu,i = xu,i) = (pu,i)xu,i(1 − pu,i)1−xu,i ,

where pu,i = 1 − e−au,i .
In the infinite link capacity case, all connections are independent of each

other. For leaf link u, the state probability has a product form and is

πu(xu) = P (Xu = xu) =
∏
i∈I

πu,i(xu,i),
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where Xu = (Xu,i; i ∈ I) ∈ S is the state vector for the leaf link, and S = {0, 1}I

denotes the link state space.
The leaf link states jointly define the network state X,

X = (Xu;u ∈ U) = (Xu,i;u ∈ U , i ∈ I) ∈ Ω, (1)

where Ω = {0, 1}U×I denotes the network state space. For the whole network,
the state probability is

π(x) = P (X = x) =
∏
u∈U

πu(xu),

as each user population is independent of each other.

OR-convolution. The leaf link state distributions jointly define the network
state distribution, as was shown above. In order to calculate the link state dis-
tributions in a tree-structured network a convolution operation is needed. The
resource sharing characteristic of multicast traffic requires a new type of convolu-
tion, the OR-convolution. Consider two downstream links s, t ∈ Nv terminating
at link v, where s, t, v ∈ J . Channel i is idle in link v if it is idle in both links s and
t and active in all other cases, which is equivalent to the binary OR-operation.
In other words, for ys,yt ∈ S

yv = ys ⊕ yt ∈ S, (2)

where the vector operator ⊕ denotes the OR-operation taken componentwise.
The OR-convolution, denoted by ⊗, is then the operation,

[fs ⊗ ft](yv) =
∑

ys⊕yt=yv

fs(ys)ft(yt)

defined for any distributions fs and ft.
In a multicast link, the link state depends on the user states downstream the

link. If a channel is idle in all links downstream link j it is off in link j and in all
other cases the channel is active. The OR-operation on the network state gives
the link state Yj = (Yj,i; i ∈ I) ∈ S, j ∈ J as a function of the network state,

Yj = gj(X) =
⊕
k∈Uj

Xk.

Similarly, the OR-convolution on the network state distribution gives the link
state distribution. Thus, the state probability, denoted by σj(yj), for yj ∈ S, is
equal to

σj(yj) = P (Yj = yj) = [
⊗
k∈Uj

πk](yj) =




πj(yj) , if j ∈ U
[
⊗

k∈Nj

σk](yj) , otherwise.

When X = x the occupied capacity on the link j is d · gj(x).
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2.3 Blocking Probabilities in a Network with Finite Link Capacities

When the capacities of one or more links in the network are finite, the state
spaces defined above are truncated according to the capacity restrictions. The
network state X defined in equation (1) is replaced by the truncated network
state X̃ ∈ Ω̃, where Ω̃ denotes the truncated state space

Ω̃ = {x ∈ Ω | d · gj(x) ≤ Cj ,∀j ∈ J }.
The insensitivity [5] and truncation principles [2] apply for this product form
network, and for the truncated system the state probabilities of the network differ
only by the normalization constant G(Ω̃) =

∑
x∈Ω̃ π(x). The state probabilities

of the truncated system are therefore

π̃(x) = P (X̃ = x) =
π(x)
G(Ω̃)

, for x ∈ Ω̃.

When the capacity on the links is finite, blocking occurs. Due to Poisson
arrivals, the call blocking probability is equal to the time blocking probability of
the system. A call in traffic class (u, i) is blocked if there is not enough capacity
in the network to set up the connection. Note that, once the channel is active
on all links belonging to the route Ru of user population u, no extra capacity
is required for a new connection. Let us define another truncated set Ω̃u,i ⊂ Ω̃
with a tighter capacity restriction for links with channel i idle,

Ω̃u,i = {x ∈ Ω | d ·
(
gj(x) ⊕ (ei1j∈Ru

)
)

≤ Cj ,∀j ∈ J },

where ei is the I-dimensional vector consisting of only zeroes except for a one in
the ith component and 1j∈Ru

is the indicator function equal to one for j ∈ Ru

and zero otherwise. This set defines the states where blocking does not occur
when user u requests a connection to channel i. The call blocking probability bc

i

for traffic class (u, i) is thus,

bc
u,i = 1 − P (X̃ ∈ Ω̃u,i) = 1 − G(Ω̃u,i)

G(Ω̃)
. (3)

This approach requires calculating two sets of state probabilities: the set of
non-blocking states appearing in the numerator and the set of allowed states
appearing in the denominator of equation (3).

A multicast network is a tree-type network, and much of the theory in cal-
culating blocking probabilities in hierarchical multiservice access networks [8]
can be used to formulate the end-to-end call blocking probability in a multicast
network as well.

2.4 The Algorithm

As in the case of access networks, the blocking probability can be calculated
by recursively convolving the state probabilities of individual links from the
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leaf links to the origin link. At each step, the state probabilities are truncated
according to the capacity restriction of the link.

In order to calculate the denominator of equation (3), let us define a new
subset S̃j of set S,

S̃j = {y ∈ S | d · y ≤ Cj}, for j ∈ J .

The corresponding truncation operator acting on any distribution f is

Tjf(y) = (4)

Let
Qj(yj) = P (Yj = yj ;Yk ∈ S̃k,∀k ∈ Mj), for yj ∈ S. (5)

It follows that the Qj(y)’s can be calculated recursively,

Qj(y) =




Tjπj(y) , if j ∈ U
Tj [

⊗
k∈Nj

Qk](y) , otherwise.

Note that, if the capacity constraint of link j ∈ Mj is relaxed, then the
branches terminating at link j are independent, and the jointly requested channel
state can be obtained by the OR-convolution. The effect of the finite capacity
Cj of link j is then just the truncation of the distribution to the states for which
the requested capacity is no more than Cj .

The state sum G(Ω̃) needed to calculate the blocking probability in equation
(3) is equal to

G(Ω̃) =
∑
y∈S

QJ(y),

where QJ is the probability (5) related to the common link j = J .
Similarly for the numerator of equation (3), let S̃u,i

j ⊂ S̃j be defined as the
set of states on link j that do not prevent user u from connecting to multicast
channel i. In other words

S̃u,i
j = {y ∈ S | d ·

(
y ⊕ (ei1j∈Ru)

)
≤ Cj}, for j ∈ J .

The truncation operator is then

Tu,i
j f(y) = f(y)1y∈S̃u,i

j
(6)

The non-blocking probability of link j is

Qu,i
j (yj) = P (Yj = yj ;Yk ∈ S̃u,i

k ,∀k ∈ Mj), for yj ∈ S. (7)

Similarly, as above, it follows that

Qu,i
j (y) =




Tu,i
j πj(y) , if j ∈ U

Tu,i
j [

⊗
k∈Nj

Qu,i
k ](y) , otherwise.
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The state sum in the numerator of equation (3) is then

G(Ω̃u,i) =
∑
y∈S

Qu,i
J (y),

where Qu,i
J is the probability (7) related to the common link j = J .

The blocking probability in equation (3) is therefore

bc
u,i = 1 −

∑
y∈S Qu,i

J (y)∑
y∈S QJ(y)

. (8)

The complexity of the algorithm increases exponentially with the number of
channels, as the number of states in the distributions to be convolved is 2I .
Therefore the use of RLA as a computationally simpler method is studied.

Single Finite Capacity Link. The single link model by Karvo et al. [3] is
a special case of the network model presented. In a network, with all but one
link with infinite capacity, and thus only one user population u that experiences
blocking (bc

u,i = bc
i ), it follows that equation (8) transforms into equation (17)

in [3].

bc
i =

∑C
j=C−di+1 πj

(xi=0)

∑C
j=0 πj

=
(1 − pi)

∑C
j=C−di+1 πj

(i)

(1 − pi)
∑C

j=0 π
(i)
j + pi

∑C−di

j=0 π
(i)
j

=
(1 − pi)

∑C
j=C−di+1 πj

(i)

(1 − pi)
∑C

j=0 π
(i)
j + pi(

∑C
j=0 π

(i)
j − ∑C

j=C−di+1 π
(i)
j )

=
(1 − pi)Bc

i

1 − pi + pi(1 − Bc
i )

=
Bc

i

(1 − Bc
i )(eai − 1) + 1

,

where πj is the link occupancy distribution for an infinite system, π
(xi=0)
j is the

link occupancy distribution restricted to the states with channel i off, and π
(i)
j

is the link occupancy distribution of a system with channel i removed using the
same notation as in [3].

3 Comparisons Between the Exact Model and RLA

The calculation of end-to-end call blocking probabilities for multicast networks
was done approximately using the RLA-algorithm in [4], where the details of
this well-known algorithm in the case of multicast networks are given. The exact
algorithm derived in the previous section allows us to study the accuracy of
RLA. To this end, we consider the example network depicted in figure 2. Due to
symmetry, the five different user populations reduce to two distinctly different
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Fig. 2. Network used to compare exact results with results given by the RLA-
algorithm.

user populations and hence routes. The capacities of each link are also depicted
in the figure. The links are numbered in the following way. The leaf link of user
one has u, j = 1, the leaf link of user two has u, j = 2, the middle link has
j = 3, and the common link has j = 4. Comparisons were made between the
exact solution and the RLA-algorithm. The number of channels offered is eight.
Each channel requires one unit of capacity. The common link in the network
has a capacity of seven units. All other links have a capacity of six units. The
end-to-end call blocking probabilities are calculated for the least used channel
using a truncated geometric distribution for the channel preference

αi =
p(1 − p)i−1

1 − (1 − p)I
,

with parameter p = 0.2. The mean holding time is the same for all channels,
1/µ = 1. In addition, the arrival intensity is the same for both user populations,
λu = λ and consequently, the traffic intensity a = λ/µ is the same for both user
populations.

The results are given in table 1. The comparison was also done for multiser-
vice traffic, where the capacity requirement is one for odd channels and two for
even channel numbers. The capacity of the common link was eleven units and
those of the other links were nine units. The results are given in table 2.

The results confirm the comparisons made in [4]. RLA-algorithm yields block-
ing probabilities of the same magnitude as the exact method. As a rule, RLA
gives larger blocking values for both routes. For route 2, RLA gives good results.

Table 1. Call blocking probabilities for the network in figure 2.

Route1 (u = 1) Route2 (u = 2)
a Exact RLA error Exact RLA error

1.0 0.0056 0.0064 14 % 0.0027 0.0028 4 %
1.1 0.0084 0.0098 17 % 0.0041 0.0044 7 %
1.2 0.0121 0.0141 17 % 0.0060 0.0064 8 %
1.3 0.0166 0.0195 17 % 0.0083 0.0090 8 %
1.4 0.0220 0.0260 18 % 0.0112 0.0121 8 %
1.5 0.0282 0.0336 19 % 0.0146 0.0157 8 %
2.0 0.0715 0.0868 21 % 0.0382 0.0416 9 %
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Table 2. Call blocking probabilities for the network in figure 2, with capacity require-
ments codd = 1 and ceven = 2.

Route1 (u = 1) Route2 (u = 2)
Channel a Exact RLA error Exact RLA error

7 1.0 0.0051 0.0058 14 % 0.0019 0.0022 16 %
8 1.0 0.0127 0.0139 9 % 0.0028 0.0029 4 %
7 1.3 0.0138 0.0162 17 % 0.0058 0.0068 17 %
8 1.3 0.0318 0.0355 12 % 0.0086 0.0092 7 %
7 1.5 0.0226 0.0268 19 % 0.0100 0.0118 18 %
8 1.5 0.0499 0.0566 13 % 0.0151 0.0162 7 %
7 2.0 0.0536 0.0645 20 % 0.0255 0.0299 17 %
8 2.0 0.1101 0.1276 16 % 0.0400 0.0431 8 %

This is because the route is very short, and the assumption of independence
between the links is not violated severely.

4 Including Background Traffic

The networks considered until now were assumed to transfer only multicast
traffic. The model can, however, be extended to cover networks with mixed
traffic. In this case, the network transfers, in addition to multicast traffic, non-
multicast traffic that is assumed independent on each link. The distribution
does not depend on the multicast traffic in the link and the traffic in the other
links. The non-multicast traffic in link j is assumed to be Poisson with a traffic
intensity Aj . The capacity requirement is equal to one unit of capacity. The
link occupancy distribution of the non-multicast traffic in a link with infinite
capacity is thus,

qj(z) =
(Aj)

z

z!
e−Aj .

The inclusion of non-multicast traffic affects only the truncation step of the
algorithm presented in section 2.4. The state probabilities are defined as in sec-
tion 2. The state probabilities of the link states that require more capacity than
available on the link are set to zero as before. However, the state probabilities
of the states that satisfy the capacity restriction of the link are altered, as the
available capacity on the link depends on the amount of non-multicast traffic on
the link. Another way of describing the relationship between the two different
types of traffic, is to consider them as two traffic classes in a two dimensional link
occupancy state space as is shown in figure 3. The traffic classes are independent
of each other. The capacity of the link is the linear constraint of this state space.

We notice that the marginal distribution of the capacity occupancy of the
multicast traffic is weighted by the sums over the columns of the occupancy
probabilities of the background traffic. If the multicast traffic occupies c = d ·yj

units of capacity, and the link capacity is Cj , then possible non-multicast traffic
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Fig. 3. Shaping of the marginal distribution of the capacity occupancy when back-
ground traffic is included in the model.

states on the link are those with z ≤ Cj − c, where z is the number of non-
multicast calls. Therefore, the truncation functions presented in equations (4)
and (6) must be replaced by the operators

T̂jf(y) =
Cj−d·y∑

z=0

qj(z)f(y), and T̂u,i
j f(y) =

Cj−d·(y⊕(ei1j∈Ru ))∑
z=0

qj(z)f(y)

The algorithm differs therefore only by the truncation function used,

Q̂j(y) =




T̂jπj(y) , if j ∈ U
T̂j [

⊗
k∈Nj

Q̂k](y) , otherwise.

Q̂u,i
j (y) =




T̂u,i
j πj(y) , if j ∈ U

T̂u,i
j [

⊗
k∈Nj

Q̂u,i
k ](y) , otherwise.

The call blocking probability in equation (3) is again obtained by two series
of convolutions and truncations from the leaf links to the common link J . The
end-to-end call blocking probability of the network is

b̂c
u,i = 1 −

∑
y∈S Q̂u,i

J (y)∑
y∈S Q̂J(y)

.

4.1 Numerical Results

The end-to-end call blocking probability was calculated using the same network
as in section 3, figure 2. The intensity of the non-multicast traffic was set to
Aj = 0.1 for all links. Table 3 shows the end-to-end call blocking probability for a
network with only multicast traffic and for a network transferring multicast and
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non-multicast traffic. Table 4 shows the end-to-end call blocking probabilities
when the multicast traffic requires double the capacity compared to the non-
multicast traffic.

The intensity of non-multicast traffic stays the same, as the intensity of the
multicast traffic increases. Clearly, the blocking probabilities are affected less, as
the intensity of the multicast traffic increases. This can also be seen by studying
the relative change in blocking probabilities shown in tables 3 and 4. The effect
of the non-multicast traffic to the blocking probability is of the same magnitude
on both routes. From table 3 we see that an inclusion of unicast traffic with one
tenth the intensity a = 1.0 of the multicast traffic almost doubles the blocking
probability. From table 1 the blocking probability increases by a factor of 1.5,
when the traffic intensity a is increased from 1.0 to 1.1. These two cases are not
equivalent as the background traffic is assumed independent of the multicast
traffic, but give a good reference to the effect background traffic has on end-to-
end blocking probabilities.

Table 3. End-to-end blocking probabilities for the network in figure 2 with background
traffic and multicast traffic.

Route1 (u = 1) Route2 (u = 2)
a Multicast Background Rel. change Multicast Background Rel. change

1.0 0.0056 0.0109 1.95 0.0027 0.0053 1.96
1.2 0.0121 0.0206 1.70 0.0060 0.0105 1.75
1.4 0.0220 0.0341 1.55 0.0112 0.0177 1.58
2.0 0.0715 0.0927 1.30 0.0382 0.0501 1.31

Table 4. End-to-end blocking probabilities for the network in figure 2 with background
traffic requiring one unit and multicast traffic requiring two units of capacity.

Route1 (u = 1) Route2 (u = 2)
a Multicast Background Rel. change Multicast Background Rel. change

1.0 0.0056 0.01 1.79 0.0027 0.0049 1.81
1.2 0.0121 0.0195 1.61 0.0060 0.0099 1.65
1.4 0.0220 0.0328 1.49 0.0112 0.0171 1.53
2.0 0.0715 0.0914 1.28 0.0382 0.0495 1.30

5 Conclusions

The paper presented a new algorithm for exactly calculating end-to-end block-
ing probabilities in tree-structured multicast networks. The algorithm is based
on the well-known algorithm for calculating blocking probabilities in hierarchical
multiservice access networks. The multicast traffic characteristics were taken into
account in the convolution step of the algorithm, using the new OR-convolution.



286 E. Nyberg, J. Virtamo, and S. Aalto

Calculating the exact solution for the end-to-end call blocking probability, how-
ever, becomes infeasible as the number of channels increases. In contrast to ordi-
nary access networks, the aggregate one dimensional link occupancy description
is not sufficient, since in the multicast network it is essential to do all calcula-
tions in the link state space, with 2I states. This is due to the resource sharing
property of multicast traffic, namely the capacity in use on a link increases only
if a channel is requested when the channel is idle. The use of RLA was studied,
as the complexity of the RLA-algorithm does not depend critically on the num-
ber of channels in the network. RLA method used in [4], however, gives larger
blocking probabilities. Even for small networks, the errors are around 15 %. The
network model and the algorithm for calculating call blocking probabilities were
further broadened to include background traffic in addition to multicast traffic.

We leave for further research the study of new approximation methods for
calculating end-to-end call blocking probabilities. Fast implementation of the
exact algorithm presented should also be investigated. At present, the model
also assumes an infinite user population behind each leaf link. The model can be
generalized to allow a finite user population behind a leaf link and is a subject
for further study.
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