
G. Pujolle et al. (Eds.): NETWORKING 2000, LNCS 1815, pp. 325-337, 2000
© Springer-Verlag Berlin Heidelberg 2000

Design and Implementation of RSVP
Based on Object-Relationships

Martin Karsten
1

Industrial Process and System Communications
Darmstadt University of Technology

Merckstr. 25 • 64283 Darmstadt • Germany
phone: +49-6151-166156 • fax: +49-6151-166152

email: Martin.Karsten@KOM.tu-darmstadt.de
http://www.kom.e-technik.tu-darmstadt.de

Abstract. RSVP has been proposed by the IETF as a signalling protocol for
reservation-based quality-of-service enabled communication in IP networks.
While RSVP’s concepts are very sophisticated, further research efforts and
potential modifications might be necessary to accomplish additional
requirements before general deployment and commercial usage. Currently, only
one freely available implementation exists and even some of the commercial
implementations are based on it. In this paper, an alternative approach to
describe RSVP protocol operations is presented, employing relational
specification of state blocks and object-relationships between them. The result
appears to be more concise and comprehensible than existing processing rules,
yet not giving up efficiency. An implementation design based on this
methodology, as well as specific details and optimizations are derived and
explained. The implementation is designed to be portable across different
operating system platforms and even to simulation environments. The primary
purpose is to carry out research on modifications of RSVP, being able to
examine those by simulation, emulation and real tests. Applying these
considerations, an experimental protocol engine has been implemented, which
is publicly available.

1 Introduction

RSVP (Resource ReSerVation Protocol), initially designed and described in [1], has
been specified by the IETF [2] to carry reservation requests for communication re-
sources across IP networks. Because RSVP is designed to handle requests for
arbitrary service classes, an even more general point of view can be adopted by
regarding it as a universal signalling protocol to carry quality of service requests.

For a variety of reasons [3], I believe that further research is needed to
determine the best design of such a signalling protocol. This research can be grounded
on the existing specification of RSVP, because of both its basic existence and its

1
This work is sponsored in part by: Volkswagen-Stiftung, Hannover, Germany.

326 M. Karsten

sophisticated design. The only existing freely available implementation [4] is not
considered well-suited for such research (see [3] for details). An attempt to create a
more suitable test environment should adhere to the following design objectives:
• structured (object-oriented) design and implementation
• portability for multiple platforms, including simulators
• clear representation of RSVP’s concepts in the code

While at a first glance RSVP seems to be straightforward and easy to understand,
the details of an implementation are rather complex. The goals of this project are
twofold. The first goal is to specify protocol operations more comprehensible than
existing documentation does. The second goal is to create and publish an
experimental platform which allows researchers to test and examine modifications
with reasonable effort. The context and initial motivation of this implementation
project are in the areas of charging for QoS in network communication [5,6,7] and
interoperability of heterogeneous QoS architectures [8,9].

The rest of this paper is organized as follows. In the next section, a brief
overview of RSVP is given, adopting the terminology of [2]. A specification of RSVP
message processing, based on object-relationships, is presented in Section 3. In
Section 4, an appropriate software design approach is derived from this specification.
The current status of the implementation with respect to the RSVP specification is
described in Section 5. Section 6 concludes the paper with a summary and an outlook
on further work items. Note that this paper is shortened in order to accomplish the
space limitation for its publication here. A more detailed version is available as [3].

2 RSVP Overview

RSVP is designed to carry reservation requests for packet-based, stateless network
protocols such as IP (Internet Protocol). In essence, it is aimed at combining the
robustness of connectionless network technology with flow-based reservations by
following a so-called soft state approach. State is created to manage routing
information and reservation requests, but it times out automatically, if it is not
refreshed periodically. In the RSVP model, senders inform RSVP-capable routers and
receivers about the possibility for reservation-based communication by advertising
their services via PATH messages. These messages carry the sender’s traffic
specification (TSpec) and follow exactly the same path towards receivers as data
packets, establishing soft state in routers. Receivers initiate reservations by replying
with RESV messages. They contain a TSpec and a reservation specification (RSpec)
and also establish soft state representing the reservation. RESV messages are
transmitted hop-by-hop and follow exactly the reverse path that is formed by PATH
messages.

RSVP treats reservation requests (e.g. TSpec and RSpec) as opaque data and
hands them to complementary local modules, which are able to process them
appropriately. Being tuned to support large multicast groups, RSVP uses logic from
these modules to merge reservation requests that share parts of the transmission path.
Merging takes place at outgoing interfaces by merging requests from different next
hops that can be satisfied by a single reservation at the same interface. As well,

Design and Implementation of RSVP Based on Object-Relationships 327

reservation requests that are transmitted towards a common previous hop are
candidates for merging. The amount of merging possible is determined by the filter
style, which is requested by receivers. For shared filter style, all reservations for the
same interface and all reservations towards the same previous hops are merged,
respectively. When distinct filter style is requested, only reservations that specify the
same sender are being merged. Furthermore, filter styles are classified by whether
applicable senders are wildcarded or listed explicitly. The (potentially empty) list of
senders is called FilterSpec. The following filter styles are currently defined:
• FF (fixed filter): single sender, distinct reservation
• SE (shared explicit): multiple senders, shared reservation
• WF (wildcard filter): all senders, shared reservation

All these filter styles are mutually exclusive and a session’s filter style is
determined from the first arriving RESV message. The combination of TSpec and
RSpec is called flow specification (FlowSpec). The combination of FlowSpec and
FilterSpec is referred to as flow descriptor.

3 Specification of RSVP Message Processing

In this section, a specification of RSVP message processing is presented, based on re-
lational design and object-relationships between state blocks. A rigorous approach for
modelling RSVP would begin by representing state information as relations and
identifying functional dependencies between them. Then, well-known normalisation
algorithms could be applied to create the highest possible normal form and message
processing could be expressed using relational algebra. Intuitively, this is often done
to some extent by software designers and programmers.

In this work, while not following the strict method, state information is
explicitly modelled as relations which in turn are considered as state blocks to create
object-relationships between them. The initial relational model is deduced from the
relevant standardization documents [2,10,11] and personal reasoning about the
protocol. Additionally, experiences made during design and implementation of the
software have been a source of insight into protocol operations. We omit the details of
relational representation here for reasons of brevity and refer to [3].

A significant part of RSVP message processing consists of finding appropriate
state blocks for certain operations. For normal implementation (i.e. without using a re-
lational database), state blocks and object-relationships are considered to be more ex-
pressive and efficient than directly implementing the relational model. The relation-
ships between objects are explicitly stored when knowledge is available, instead of re-
calculating them through relational rules whenever they are needed. The algorithmic
description in [10,11] exhibits a relational style, but without being rigorous. Opposite
to that approach, the processing rules in this paper are based on object-relationships
between state blocks. A subset of state blocks is similar to those described in [10,11],
but semantics and lifetime are occasionally modified. Additional relations are
designed to express useful state information. Eventually, these are represented as state
block objects as well, to efficiently accomplish certain operations.

328 M. Karsten

Fig. 1. Entity-Relationship Diagram for State Blocks

3.1 State Blocks and Relationships

From the initial relations, corresponding state block objects and state block
relationships are deduced. Although this is not done rigorously (i.e. by using nor-
malisation algorithms), certain optimizations are possible to avoid redundancy of
information and suit an efficient implementation. The result can be expressed as an
Entity-Relationship Model (ER-Model) and is shown as diagram in Figure 1.

3.1.1 State Blocks
Session. For each RSVP session, the Session state block bundles all relevant informa-
tion and the session’s destination address and port is saved there. Relationships are
kept to those state blocks that are needed to fully access all information. All Session
objects are bound to a single RSVP object, representing an RSVP router.
Path State Block (PSB). A PSB holds all relevant information from a PATH mes-
sage, i.e., the sender’s address and traffic specification, routing information, etc.
Reservation State Block (RSB). An RSB represents a reservation requested from a
next hop, particularly by holding the reservation specification, i.e., the FlowSpec,
which determines the amount of resources that are requested, depending on the
service class. It identified by its owning OutISB and the next hop’s address.
Outgoing Interface State Block (OutISB). This state block represents the merged
reservations from multiple RSBs applying at a certain outgoing interface. It is roughly
comparable to the TCSB in [10,11]. However, different from those processing rules,
the TCSB is split into a general (OutISB) and a specific part. The nature of the
specific part depends on the particular traffic control implementation, which in turn
depends on the corresponding link layer medium behind the interface [2,12,8]. An
instance of OutISB is constructed immediately upon creation of the first contributing
RSB.
Outgoing Interface at PSB (OIatPSB). For each outgoing interface that is part of
the routing result for a PATH message, an instance of OIatPSB is created. A
relationship to an OutISB object expresses that an actual reservation is active at this
interface. The introduction of this state block allows to split the N:M relationship
between PSB and OutISB into two 1:N relationships, which simplifies
implementation.
Previous Hop State Block (PHopSB). The concept of an explicit PHopSB is new to
an RSVP description. It is used to hold information about reservations that are merged
at a certain incoming interface towards a previous hop, as well as the resulting

Design and Implementation of RSVP Based on Object-Relationships 329

reservation request that is sent to this hop. A PHopSB is identified by the previous
hop’s IP address and the incoming interface, at which traffic from this hop arrives for
the destination address of a session. Again, an object is created as soon as the first
PATH message arrives from a certain previous hop.
In the rest of the paper, the terms state block and state block object are used syn-
onymously. In Figure 1, all entities except Session are weak entities, i.e., they cannot
uniquely be identified without the respective session key. Furthermore, OutISB is
indirectly identified through an OIatPSB at any of the PSBs it applies to, although the
cardinality ratio implies the opposite direction. In RSB there is no information about
the outgoing interface stored and the list of senders is not used for identification.
Thereby, it is a weak entity depending on the key of OutISB. For both RSB and
OutISB, instead of storing the set of applicable senders, a relationship to PSB is
maintained (indirectly in case of OutISB). The cardinality ratio of each relationship is
shown in the diagram in Figure 1.

3.1.2 Relationships
Each relationship is presented, including the necessary key to traverse it, if it is a
multi-object relationship. The respective keys applying to these relationships are often
smaller than the full key of each state block. This is due to inherent identification
through the relationships. However, the implementation of this model is done by
directly storing the relationships. Furthermore, all Session objects are bundled into a
global container. This could be considered as a special relationship to a unique object
representing the RSVP router.

SessionPSB (1)key for PSB: Sender, Incoming Interface and Previous Hop
In a PSB object, information about incoming interface and previous hop are not stored
directly, instead this information can be extracted from the corresponding PHopSB
(see Relationship (7) below).

SessionPHopSB key for PHopSB: Incoming Interface and Previous Hop (2)

OutISBRSB key for RSB: Next Hop (3)
Each OutISB is related to those RSBs that are merged together at an outgoing
interface. Because an RSB only contributes to one specific OutISB, partitioning the
set of RSBs along their OutISBs creates a complete and disjunct decomposition of all
RSBs. Therefore, a relation between Session and RSB is not necessary to access
RSBs from a Session object.

RSBPSB key for PSB: Sender (4)
A reservation applies to a set of senders, either by explicit selection (SE or FF filter
style) or implicit association (WF filter style). Instead of storing a list of all sender ad-
dresses, a relationship to the respective PSBs is maintained from the RSB.

OIatPSBPSB key for OIatPSB: Outgoing Interface (5)
A merged reservation, installed at an outgoing interface, applies to a set of senders.
As with RSBs, this is expressed by storing relationships to the respective OIatPSBs,
instead of their address/port pairs.
OIatPSBOutISB key for OIatPSB: Sender (6)
This relationship expresses the reservation at a certain outgoing interface that is
applied to traffic from a sender.

330 M. Karsten

PHopSBPSB key for PSB: Sender (7)
Each PSB is logically connected to the PHopSB representing its previous hop. This
relationship is mainly used when reservation requests are created for previous hops.
Information from the PHopSB (hop address and incoming interface) is used to
distinguish PSB objects (see Relationship (1) and Path State relation).

3.2 Operations

In this section, the core operations of the RSVP protocol engine are explained with re-
spect to the relationships between state blocks. The presentation is divided into 4
parts, which together form the central RSVP operations:

• State Maintenance
• Outgoing Interface Merging
• Incoming Interface Merging
• Timeout Processing

In general, if a message or timeout triggers a modification of internal state, all
relationships are updated immediately during State Maintenance or Timeout
Processing, except the relationship between PSB and OutISB. For Outgoing Interface
Merging, the “old” state of this relationship has to be available to appropriately
modify the filter setting at the underlying traffic control module. Afterwards, this
relationship is updated, as well. If the contents of an RSB change, Outgoing Interface
Merging is invoked. If during Outgoing Interface Merging, the contents of an OutISB
are changed, Incoming Interface Merging is triggered. Only if the resulting
reservation request (stored in PHopSB) changes, a new RESV message is created and
sent to the previous hop.

The basic claim of this work is that maintaining relationships imposes no
significant additional overhead during analysing an incoming message and updating
state from it. However, when it comes to merging reservations and timeout
processing, existing relationships can be used instead of recomputing them every
time, especially under stable conditions. In this section, only the basic operations are
described. Whenever the term interface is used in the following subsections, it might
also denote the API (application programming interface). Again, additional details
about message pre- and post-processing can be found in [2,10,11].

3.2.1 State Maintenance
Arriving RSVP messages are decomposed into components and processed depending
on the type of message. During processing, appropriate state blocks have to be
located, created and/or modified. In the following, a pseudo-algorithmic description
of the processing rules are given for each message type. Although it is not mentioned
explicitly for most of the message types, usually the appropriate Session object has to
be determined first.

PATH. Find a Session and check for conflicting destination ports. If no Session
exists, create one. Find a PSB for this sender through Relationship (1) and check for
conflicting source ports. If none exists, create a new PSB. When creating a PSB
object, create the relationship to the corresponding Session object. If the PSB is new

Design and Implementation of RSVP Based on Object-Relationships 331

and no appropriate PHopSB can be found, create a new PHopSB. Set a relationship
between PSB and PHopSB. If the session address is multicast and the incoming
interface differs from the routing lookup result, mark this PSB as local to an API
session. Update all information in the PSB and in case of relevant changes, trigger an
immediate generation of a PATH message and potentially invoke Outgoing Interface
Merging (Section 3.2.2).

RESV. Process each flow descriptor separately, i.e., each pair of FilterSpec and
FlowSpec. Find or create an appropriate OutISB through Relationship (5) and (6) and
find or create an RSB using Relationship (3). When creating new objects, set the
corresponding relationships. Match (i.e. consider the intersection) the filter
specification (in case of FF or SE) or the address list determining the scope (WF)
against all existing PSBs that route to the outgoing interface through Relationship (1).
Update the RSB and invoke Outgoing Interface Merging, if relevant content has
changed, e.g., FilterSpec or FlowSpec.

PTEAR. Find a PSB through Relationship (1). If found, forward the message to the
PSB’s outgoing interfaces, remove the PSB, clear its relationships and invoke Outgo-
ing Interface Merging.

RTEAR. Process each flow descriptor separately. Find an RSB through
Relationship (5) and (6) and Relationship (3). If found, remove the filters that are
listed in the message and invoke Outgoing Interface Merging. If the RSB’s filter list is
empty, remove the RSB and clear its relationship to OutISB.

PERR .Find a PSB through Relationship (1). If found, forward the message through
the PSB’s incoming interface.

RERR. Find a PHopSB for the previous hop address from the message. If found and
the error code indicates an admission control failure, set a blockade FlowSpec at those
PSBs from the PHopSB that match a filter from the message. Find all OutISBs that
match a filter from the message and do not belong to the incoming interface. Forward
the message to all RSBs that have a relationship to these OutISBs. In case of
admission control failure, forward the message to only those RSBs that do not have a
FlowSpec strictly smaller than that of the message.

RCONF. Forward the message to the outgoing interface that results from a routing
lookup for the message’s destination address.

3.2.2 Outgoing Interface Merging
During the merge operation at an outgoing interface, all applicable PSBs and RSBs
have to be collected to access their TSpecs and FlowSpecs. Precise operation depends
on the nature of the underlying link layer and appropriate algorithmic descriptions can
be found for point-to-point or broadcast media in [10,11] and for non-broadcast multi-
access media (e.g. ATM) in [13,12,8]. Outgoing Interface Merging operates on a cer-
tain OutISB. Relationships to those PSBs that are relevant and route to this interface
as well as RSBs that contribute to the merged reservation state are known and can be
traversed directly, instead of recomputing them. Therefore, no special (filter style
dependent) rules have to be given on how to find those state blocks, but instead only
rules to process them appropriately are necessary. The result is stored in the OutISB
and, if the merged FlowSpec or the FilterSpec has changed, the appropriate PSBs and

332 M. Karsten

PHopSBs (accessible through Relationship (5), (6) and (7)) are marked for Incoming
Interface Merging. Certain policing flags have to be passed to traffic control, which
can be derived from accessible information, as well. To determine whether this
reservation is merged with any other reservation that is not less or equal, the LUB
(least upper bound) of all merged FlowSpecs from all OutISBs (at different
interfaces) for all PSBs can be calculated by traversing Relationship (5) and (6). If
afterwards the OutISB’s filter list is empty (which must coincide with having no
relations to RSBs), remove the OutISB and clear its relationship to Session.

3.2.3 Incoming Interface Merging
After a single or multiple (in case of RESV message processing) invocations of
Outgoing Interface Merging, all PHopSBs that are marked for update are subject to
Incoming Interface Merging. During this sequence, it is again possible to traverse
relationships, instead of collecting state blocks. The details of this merging operation
depend on the filter style for the session. In case of distinct reservations (FF), each
PSB that relates to the PHopSB is considered separately. All OutISBs accessible
through this PSB are merged and a flow descriptor is created, containing the PSB’s
sender address and the merged FlowSpec. For shared reservations, all OutISBs having
a relationship to any of the PSBs are merged and the resulting flow descriptor
contains the set of all sender addresses and the single merged FlowSpec.

3.2.4 Timeout Processing
According to the soft state paradigm, each state block is associated with a timer and
deleted upon timeout. Periodic refresh messages restart the timer. Timers are directly
connected to the object they apply to and the actions resulting from a timeout are
similar to those when receiving a PTEAR or RTEAR message. The only difference is
that the respective PTEAR/RTEAR message has to be created instead of just
forwarding it.

4 Software Design

Given the objectives of the project, these goals have been set for an implementation:
• Message handling (creation/interpretation) should be clear, simple and extensible.
• Message processing should be clear and comprehensible, yet efficient.
• The implementation should be portable, but also nicely integrate with system level

interfaces.
The design that has been chosen is a hybrid form of object orientation and

procedural design. Object orientation does not seem to be fully appropriate for
implementing state machines like network protocol engines, however, many aspects
of an implementation can benefit from data encapsulation, inheritance and
polymorphism. C++ has been selected as the programming language of choice to
implement such a hybrid design under the given objectives. In the following,
identifiers stemming from the implementation are printed in italic, when they are
introduced. Figure 2 gives an overview of the design.

Design and Implementation of RSVP Based on Object-Relationships 333

In this picture, the main components, which together form the contents of a global
RSVP object, are shown. An RSVP object represents an RSVP-capable router and
interacts through abstract interfaces with system-dependent services like routing, net-
work I/O, traffic control and others. Multiple Session objects exist, representing
currently active RSVP sessions. A number of LogicalInterface objects encapsulate
physical and virtual interfaces of the underlying system. Logical interfaces are
numbered and the number is used as LIH (Logical Interface Handle, see [2] for
details). The API is modelled as a dedicated object, called API_Server, containing a
special instance of class LogicalInterface, and all information about currently active
API clients. RSVP messages are encapsulated in a Message class and passed between
LogicalInterface and Session objects, potentially involving API_Server. Global state
is kept in the RSVP object, for example, the current message, a PHopSB refresh list,
etc.

Fig. 2. Design of RSVP Implementation (Overview)

4.1 Message Processing

Each incoming message arrives at the main RSVP object. After preprocessing and up-
dating global state, the message is dispatched to the appropriate Session object for
further processing. Some of the message processing rules from Section 3.2.1 are
carried out in the RSVP object (e.g. finding or creating a Session object), but the
majority is implemented in class Session.

The sequence Outgoing Interface Merging is link-layer dependent and conse-
quently, functionality is split up. Common merging logic is implemented in class
OutISB. A base class TrafficControl provides basic services and a uniform calling in-
terface for the link-layer specific part. This calling interface takes an instance of
OutISB and potentially a list of newly arrived filters as input parameters. All state that

334 M. Karsten

is needed for admission control and updating of the underlying scheduling system is
then accessible through OutISB. Both classes TrafficControl and OutISB are inherited
by link-layer specific classes.

Incoming Interface Merging takes place when reservation state has changed,
that is, if FlowSpec or FilterSpec of an OutISB has been modified. It is implemented
in class RSVP, so that it can directly access all relevant global state information.

4.2 Implementation Details

Relationship Representation.Relationships are implemented as dedicated classes,
which are used as base classes for those classes they apply to. The relationship classes
automatically maintain referential integrity. A single-object relationship is internally
represented by a pointer or reference, whereas a multi-object relationship is internally
represented by a sorted list of pointers to the respective objects. Relationship (5) is in-
ternally stored as an array of pointers, because at most one OutISB exists at each
interface and can be accessed directly by using the interface’s unique LIH as index.
Timers. Timer management is logically separated from the rest of the
implementation, such that it can be independently optimized without considering
other parts of the code. A base class BaseTimer exists, from which refresh and
timeout timers are derived. They are controlled by their owners, but handled
commonly through BaseTimer. Currently, all timers are kept in a container, ordered
by their expiration time. This design completely hides implementation details between
timer management and timer clients.
Container Classes. A simple container library for lists and sorted lists has been
implemented, in a style similar to the C++ STL (Standard Template Library). While it
is conceptually very advantageous to use common container classes, it seems not
necessary to provide the most efficient implementation for them. It is left to the user
of this implementation to decide whether outmost efficiency is required when
accessing certain containers or not. Because of the encapsulated design, testing of
different algorithms and data layouts for containers is possible with relatively low
effort.

4.3 Lessons Learned

It seems clear that introducing PHopSB and OutISB as important central state blocks
representing merging state provides advantages due to their naturally given relations
to RSBs and PSBs. The notion of recalculating relationships at every stage of
message processing seems sub-optimal compared to maintaining and traversing these
relationships. Some additional details are listed in [3].

5 Implementation Status

In this section, the current implementation status is described in comparison to the
RSVP specification. This implementation is a full implementation of RSVP

Design and Implementation of RSVP Based on Object-Relationships 335

operations, except certain limitations given below. It is developed and tested to
automatically compile on Solaris 2.6, FreeBSD 3.X and Linux 2.X operating systems,
using GNU C++ 2.95 and higher. The complete source package consists of
approximately 19,000 lines of code. System-dependent code is cleanly separated and
consists of about 2,000 lines of code with at most 150 lines dedicated to each system.
The software is publicly available from http://www.kom.e-technik.tu-
darmstadt.de/rsvp/.

5.1 Features

The implementation already provides some features that are new to an RSVP imple-
mentation and rather rare for experimental signalling protocols in general.

RSVP can be run in an emulation mode, in which multiple daemons execute on
the same or differing machines and use a configurable virtual network between them,
including shared link media and static multicast routing. Without such a feature,
examinations of RSVP protocol behaviour in non-trivial network topologies are only
possible by using a simulator or by using real systems. In the second case, it is
necessary to start multiple processes on multiple machines needing super-user
privileges and a suitable infrastructure. The emulation mode allows to experiment
without the need for additional software nor hardware. A test-suite can be created by
writing high-level configuration files, from which detailed configuration files are built
with a special tool. A preconfigured test-suite consisting of 16 virtual nodes and
including test scenarios already exists. Furthermore, the emulation mode can be
combined with real operation, for example, to test interoperability with other
implementations.

Communication between RSVP daemon and API clients uses soft state. This is
deemed useful in cases when RSVP operates on a router on behalf of an API client at
a different host. There is no need for complicated connection management and the
API can be treated similar to an ordinary RSVP hop. It is configurable at compile
time to have asynchronous API upcalls realized by signals or by using threads. Many
other options devised for testing purposes are configurable at compile time, as well.

5.2 Limitations

Some of the properties of a full compliant RSVP implementation are currently
missing. The main reason for them to be missing is their relative importance with
respect to the project goals, compared to the effort necessary to develop and test these
features.
• IPv6 is currently not supported. Due to the modular and portable design of the

software, this should not create too much effort, yet it has to be tested then.
• UDP encapsulation as described in [2] is not supported. It is not planned to

support this in the future, because it does not belong to the core of the
specification and it is already discussed in the IETF to drop this requirement [14].

336 M. Karsten

5.3 Traffic Control Interface

An interface to real packet scheduling is provided for the CBQ package on Solaris
and for HFSC and CBQ scheduling using the ALTQ package on FreeBSD (see [3] for
appropriate references). In the absence of real scheduling packages, the total amount
of available bandwidth can be configured per interface. For each reservation, the
necessary resource requirements are calculated in terms of service rate and buffer.
The results are checked against the available capacity and logged.

6 Summary and Future Work

In this paper I have presented an implementation of RSVP that is based on
different design and implementation paradigms than existing work. The description of
RSVP operations becomes more comprehensible when using object-relationships as
principle method of describing state blocks and message processing. Furthermore, a
high-level description of processing rules can be translated into implementation
details and vice versa with less semantic deprivation. A brief specification of RSVP
processing rules is presented to demonstrate the capabilities of this approach. Certain
optimizations have been carried out and additional tuning seems possible, if an
implementation is based on maintaining object-relationships instead of recomputing
them when needed. Design objectives for an experimental RSVP platform have been
formulated and a design for an RSVP implementation is presented, following these
objectives and being based on object-relationships. To a large extent, the design
objectives have been met by the prototype. It is shown in this paper, how an
experimental research platform can benefit from the application of modern software
principles. The implementation described in this paper will be publicly available to
the research community.

There is still a lot of research work to be carried out in the area of signalling re-
source requirements. A formal specification of RSVP in terms of relational algebra
could be derived from the results of this work. This in turn could be used for formal
verification of protocol implementations and modifications. Many potential protocol
refinements remain open for examination. For this project, it is planned to further
extend and tune the implementation as well as completing to port it to a simulation
environment, which is already under way. Additionally, the research issues and
existing proposals that are mentioned in Section 1 are going to be explored based on
this implementation. Finally, results from this project might be useful when new
proposals for new signalling protocols are being discussed, implemented and tested.

Acknowledgments

Jens Schmitt implemented the initial integration of the CBQ and ALTQ packages. I
also acknowledge the help of Jens Schmitt and especially Nicole Berièr during prepa-
ration of this paper.

Design and Implementation of RSVP Based on Object-Relationships 337

References

[1] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New
Resource ReSerVation Protocol. IEEE Network Magazine, 7(5):8–18,
September 1993.

[2] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. RFC 2205 -
Resource ReSerVation Protocol (RSVP) – Version 1 Functional Specification.
Standards Track RFC, September 1997.

[3] M. Karsten. Design and Implementation of RSVP based on Object-Relation-
ships. Technical Report TR-KOM-2000-01, Darmstadt University of
Technology, February 2000. Avalaible at ftp://ftp.kom.e-technik.tu-
darmstadt.de/pub/ TR/TR-KOM-2000-01.ps.gz.

[4] USC Information Sciences Institute. RSVP Software, 1999.
http://www.isi.edu/ div7/rsvp/release.html.

[5] M. Karsten, J. Schmitt, L. Wolf, and R. Steinmetz. An Embedded Charging
Approach for RSVP. In Proceedings of the Sixth International Workshop on
Qality of Service (IWQoS’98), Napa, CA, USA, pages 91–100. IEEE/IFIP, May
1998.

[6] M. Karsten, J. Schmitt, L. Wolf, and R. Steinmetz. Provider-Oriented Linear
Price Calculation for Integrated Services. In Proceedings of the Seventh IEEE/
IFIP International Workshop on Quality of Service (IWQoS’99), London, UK,
pages 174–183. IEEE/IFIP, June 1999.

[7] M. Karsten, N. Berier, L. Wolf, and R. Steinmetz. A Policy-Based Service
Specification for Resource Reservation in Advance. In Proceedings of the
International Conference on Computer Communications (ICCC’99), Tokyo,
Japan, September 1999.

[8] J. Schmitt, L. Wolf, M. Karsten, and R. Steinmetz. VC Management for Heter-
ogeneous QoS Multicast Transmissions. In Proceedings of the 7th
International Conference on Telecommunications Systems, Analysis and
Modelling, Nashville, Tennessee, March 1999.

[9] J. Schmitt, M. Karsten, L. Wolf, and R. Steinmetz. Aggregation of Guaranteed
Service Flows. In In Proceedings of the Seventh International Workshop on
Qality of Service (IWQoS’99), London, UK, pages 147–155. IEEE/IFIP, June
1999.

[10] R. Braden and L. Zhang. RFC 2209 - Resource ReSerVation Protocol (RSVP)
– Version 1 Message Processing Rules. Informational RFC, September 1997.

[11] B. Lindell, R. Braden, and L. Zhang. Resource ReSerVation Protocol (RSVP)
– Version 1 Message Processing Rules. Internet Draft, February 1999. Work in
Progress.

[12] J. Schmitt. Extended Traffic Control Interface for RSVP. Technical Report
TR-KOM-1998-04, Darmstadt University of Technology, July 1998. Avalaible
at ftp://ftp.kom.e-technik.tu-darmstadt.de/pub/TR/TR-KOM-1998-04.ps.gz.

[13] E. S. Crawley, L. Berger, S. Berson, F. Baker, M. Borden, and J. J. Krawczyk.
RFC 2382 - A Framework for Integrated Services and RSVP over ATM. Infor-
mational RFC, August 1998.

[14] R. Braden. RSVP/IntServ MIB issues, June 23rd 1998. Contribution to rsvp
mailing list. Available from ftp://ftp.isi.edu/rsvp/rsvp-1998.mail.

	1	Introduction
	2 RSVP Overview
	3	Specification of RSVP Message Processing
	4 Software Design
	5	Implementation Status
	6	Summary and Future Work
	References

