
An Agent-Based Framework
for Large Scale Internet Applications

Mamadou Tadiou Kone1 and Tatsuo Nakajima2

1 Japan Advanced Institute of Science and Technology, 1-1 Asahidai,
Tatsunokuchi-machi, Nomi-gun, Ishikawa-ken, Japan 923-12

mamadou@jaist.ac.jp
2 Waseda University, Shinjuku-ku, Ookubo, Tokyo 169-8555, Japan.

tatsuo@mn.waseda.ac.jp

Abstract. The idea of a software entity that performs tasks on behalf
of a user across the Internet is now well established. We introduce in this
paper a new approach to service discovery and QoS negotiation over the
Internet. Our approach presents a framework for service discovery and
QoS negotiation at the network level that rely on two concepts: multi-
agent systems and agent communication languages (ACL). In this frame-
work, a user and service agents engage in a structured communication
through the m ediation of a QoS Broker Agent and a Facilitator Agent.
Here, the Facilitator Agent acts on behalf of several service agents. It
acquires information from these service agents and acts as a single point
of contact to supply this information to the User Agent via the QoS
Broker Agent. A number of service discovery protocols like the Service
Location Protocol (SLP), and Sun Microsystem’s Jini has been designed
for restricted environments and do not scale to the entire Internet. In
order to pro vide an infrastructure for large scale Internet applications,
we designed a prototype multi-agent system that is able to discover re-
sources and negotiate QoS at the network level.
Keywords: Mutli-agent systems, Agent Communication Languages
(ACL), Knowledge Query and Manipulation Language (KQML), Quality
of Service (QoS), Internet.

1 Introduction

The tremendous growth of the Internet in the past few years sparked a whole new
range of applications and services based on its technologies. Users will be able
to take full advantage of these new capabilities only if there is an appropriate
configuration to deal with the scalability and heterogeneity problems inherent
to the Internet. In this line, resource discovery on the network and Quality of
Service (QoS) assurance are important subjects that are drawing attention. In
particular, the Service Location Protocol (SLP) [4] designed by the Internet
Engineering Task Force (IETF) aims to enable network-based applications to
automatically discover the location of services they need. However, SLP was
designed for use in networks where the Dynamic Host Configuration Protocol
(DHCP) [1] is available or multicast is supported at the network layer. Neither

G. Pujolle et al. (Eds.): NETWORKING 2000, LNCS 1815, pp. 632–642, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

An Agent-Based Framework for Large Scale Internet Applications 633

DHCP nor multicasting extend to the entire Internet because these protocols
must be administered and configured. As a result, SLP does not scale to the
Internet.
Our objective in this paper is to deal with two important limitations in re-
source management for large scale applications: scalability and communication
costs. We propose in this paper a framework that relies on the concepts of Multi-
agent Systems and Agent Communication Language (ACL) (here the Knowledge
Query and Manipulation Language (KQML) described in [3]). In this framework,
a user agent, a QoS manager agent, one or several facilitator agents, and service
agents (application agent, system agent, network agent, and resource agent) en-
gage in a mediated communication through the exchange of structured KQML
messages.
Following this introduction, we state in section 2 the problem we intend to
examine. In section 3, we describe the concepts and protocols underlying our
multi-agent system based QoS negotiation scheme. In addition, we give the im-
plementation details of our framework in the same section. Some issues and
perspectives are proposed in section 4 and then related works are presented in
section 5. Finally, we conclude in the last section 6.

2 Agent-Based Systems

2.1 Multi-agent Systems

There are two well-known perspectives in defining the word agent: the soft-
ware engineering perspective and the cognitive science (AI) perspective. The
first refers to a piece of software called mobile agent or autonomous agent that
can migrate autonomously inside a network and accomplish tasks on behalf of
their owners. On the other hand, the second states that multi-agent systems are
distributed computing systems composed of several interacting computational
entities called agents. These constituent agents have capabilities, provide ser-
vices, can perceive and act on their environment. Service components involved
in a QoS provision are modeled as this type of agent.

2.2 Agent Communication Languages

An agent communication language (ACL) stems from the need for better prob-
lem solving paradigms in distributed computing environments. One of the main
objectives of ACL design is to model a suitable framework that allow heteroge-
neous agents to interact, communicate with meaningful statements that convey
information about their environment or knowledge.
The Knowledge Sharing Effort group designed one example of ACL, the Knowl-
edge Query and Manipulation Language (KQML) described in [3]. Our frame-
work uses the KQML language, which is made of three layers (figure 1) : the
communication layer, the message layer, and the content layer. A KQML mes-
sage has the following structure:

634 M.T. Kone and T. Nakajima

Content Layer: ontology, content language

Communication Layer: sender, receiver, msg id

Message Layer: performatives, msg format

Fig. 1. KQML three layers structure

(tell
:sender QoS-manager
:receiver User
:language Prolog
:in-reply-to id1
:ontology QoS-ontology
:content “available(resource,URL)”

)
Here, tell is called a performative, :sender, :receiver, :language, :in-reply-to,

and :ontology are parameters. The QoS manager informs (tell) the user about the
availability of a resource on the Internet by using Prolog as a content language.
There are two types of agent communication: the direct communication relates
a sender agent with a known receiving agent and the mediated communication

tell(X)

tell(X)

recruit(tell(X))

subscribe(ask(X))

tell(X)

ask(X)

tell(X)

ask(X)

advertise(ask(X))

tell(X)

ask(X)

advertise(ask(X))

broker(ask(X))

tell(X)

recommend(ask(X))

advertise(ask(X))

Subscribing

Brokering

Recruiting

Recommending

QoS manager Facilitator Service Agent

tell(X)

tell(X)

tell(X)

tell(X)

QoS
Specification

Reply(SA)

User Agent
(UA) (SA)

Fig. 2. Facilitator mediated QoS negotiation

An Agent-Based Framework for Large Scale Internet Applications 635

illustrated in figure 2 uses the services of special agents (facilitators) that act as
brokers between agents in need of some service and other agents that provide
them. Mediation involves on one hand, needy agents subscribing to services and
on the other hand facilitators brokering, recruiting, and recommending agents
that registered their identities and capabilities.

3 Multi-agent System-Based QoS Negotiation

3.1 The Problem

In standard QoS provision schemes for application running on small or local
area networks, a QoS manager determines all configurations that can sustain an
activity by:
• identifying necessary system components and building potential configurations,
• classifying these configurations, and
• selecting the most suitable configuration.

This approach assumes that the QoS manager has knowledge of potential ser-
vice providers, system components and resources that exist in its environment
and can communicate directly with them. As long as the number of entities in-
volved in this service is small, this scheme is feasible and communication costs
are acceptable. However, in a heterogeneous setting like the Internet with mil-
lions of computers, this approach shows two clear limitations:
• First: During negotiation, the QoS manager alone must bear all the burden of
identifying and selecting appropriate resources on a large scale networks like the
Internet. This situation adds a substantial overload on the operation of the QoS
manager. In addition, services and resources may not be guaranteed consistently.
• Second: When the number of entities involved in a direct communication with
the QoS manager is modest, communication costs remain reasonable. However,
in the Internet, these costs become prohibitive even with auxiliary local QoS
managers.

To address these scalability and communication costs issues, we propose a
framework for QoS negotiation illustrated in figure 3 where clients applications
and service providers engage in a mediated communication. The mediators called
facilitators and QoS brokers are supplied with information about identities and
capabilities of service providers by the providers themselves. These entities are
modeled as software agents with attributes, capabilities and mental attitudes
as in AI. At the core of our framework lies the concept of multi-agent system
composed of a user agent, a QoS manager agent, a facilitator agent, and service
agents (network agents) communicating in KQML.

3.2 Concepts and Framework Description

Concepts :
Prior to starting a service, a user specifies and supplies the QoS manager with
a level of service expressed in QoS parameters. Then, the QoS manager must

636 M.T. Kone and T. Nakajima

KRIL

KQML manager

Java object

handler
Performative

interpreter
Content

K-Router

QoS broker

KRIL

KQML manager

Java object

handler
Performative

interpreter
Content

K-Router

Service Agent

Se
rv

ic
e

Su
bs

cr
ip

tio
n

Se
rv

ic
e

A
dv

er
tis

em
en

t

KRIL

KQML manager

Java object

handler
Performative

interpreter
Content

K-Router

Facilitator

KRIL : KQML Router Interface Language

KQML message

KRIL

KQML manager

Java object

handler

interpreter

K-Router

Content

Performative

User Agent

KQML message
TCP/IP network

KQML message

Fig. 3. System architecture

identify the set of components that can sustain this service. This process uses
the following concepts:
• An ontology provides a vocabulary for representing and conveying knowledge
about a topic (e.g. QoS) and a set of relationships that hold among the terms
in that vocabulary. Our architecture uses four ontologies:

∗ a yellow page ontology for service advertisement by service agents,
∗ a white page ontology for finding the location of an agent given its name,
∗ a general QoS ontology for the current domain knowledge,
∗ and a QoS broker ontology for asking network options by the user and QoS
broker.

• A KQML manager encompasses:
∗ Conversations that group messages with a common thread identified
by the “:reply-with and :in-reply-to”parameters;

∗ content interpreters that handle incoming and related response
messages according to the ACL, content language and ontology associated
to these messages;

∗ performative handlers that process a message performative in conjunc-
tion with its ACL, content language and ontology.

QoS Negotiation Protocol :
In our framework, four types of agents communicate in KQML according to the
following protocol:
• The user informs its agent via an interface of the required level of service.
• The user agent sends to the QoS manager agent a KQML message with required
levels of service expressed in appropriate QoS parameters like in figure 4.
• The QoS manager needs to identify all components necessary to build a config-
uration that can sustain an activity. For this purpose, its agent sends a KQML
message to the facilitator agent and can ask its cooperation in four different ways
(subscription, brokering, recruiting and recommendation) in discovering all the

An Agent-Based Framework for Large Scale Internet Applications 637

:content (

:ontology QoS

QoS spec.

:receiver
:sender

:language anACL

:reply-with id1

tell(

QoS-manager
User

:throughput10 :delay 5
:jitter .2 :loss 5))

Corresponding KQML message

Fig. 4. User and QoS Broker interaction

appropriate resources. A structure of this KQML message and agent interaction
is shown in figure 5.
• The facilitator agent acts as a resource broker that

∗ recruits, recommends appropriate service agents (application, system,
and network agents) to the QoS manager;

∗ forwards the QoS manager messages (brokering and recruiting) to suitable
service agents; and

∗ informs (on subscription) or recommend to the QoS manager service agents
that fulfill its requirements.

• All servive agents (network agents) advertise their capabilities to the the fa-
cilitator agent upon registration. Upon request from QoS broker, the facilitator
supplies the identities and loccations of necessary network resources. At last, the
user may view on an appropriate interface the available resources.

This QoS negotiation model for large scale Internet applications is applied in
two ways: locally or remotely. When the required resources are available locally
and registered at the local facilitator, negotiation is done at the current host as
illustrated in figure 6.

On the other hand, when some resources are unavailable on site, the local
facilitator reaches out to other facilitators at different locations as illustrated in
figure 7. The local facilitator forwards requests (broker-all) to remote facilitators
which in turn conduct a local inquiry. In fact, this approach to agents’ interaction
is already used in the field of agent-based software engineering where application
programs are modeled as software agents and interaction is supported by an
appropriate ACL. In this approach, agents are organized in a federated system
with messages relayed by facilitators between hosts.

638 M.T. Kone and T. Nakajima

(ask-all

:jitter .2 :loss 5)))5:delay

QoS-manager:sender
:reply-with
:language anACL

id1

:ontology QoS-broker
:content (:throughput 10

Service request

(broker-all

:sender
:receiver
:reply-with

Facilitator
id0

:language KQML
:ontology kqml-ontology

QoS-manager

:content

Corresponding KQML message

Fig. 5. QoS Broker and Facilitator interaction

3.3 Implementation

In experimenting with this model of resource discovery and QoS negotiation, we
designed a prototype in the JAVA language to simulate QoS negotiation between
several agents at the network level. That is to say, to illustrate our approach, a
user agent and network agent communicate via a QoS broker and a facilitator
in terms of network parameters only. First, local negotiation is considered, then

Facilitator Agent

User Agent

QoS Manager Agent

Application resources

Network resources

System
 resources

Fig. 6. Local QoS negotiation with a single facilitator dealing with resources inside a
given host.

An Agent-Based Framework for Large Scale Internet Applications 639

QoS Manager
Agent

User Agent Service Agent

Facilitator
Agent

Facilitator
Agent

Service Agent

Service Agent

TCP/IP based Network

Fig. 7. Large scale QoS negotiation with several facilitators involved in the negotiation
process accross the Internet.

it is extended to remote locations across the Internet.
The implementation of our prototype includes the following tools:
- The Java-based KQML API called JKQML in [9]. The JKQML API with its
structure in figure 8 adapted from [9] provides a platform for designing KQML-
enabled agents. JKQML is based on the JAVA language and provides interop-
erability to software that needs to exchange information and services.
Handling KQML messages involves the following steps:

1. Instantiating a KQML manager with the method:
public KQMLManager(String agentName, String protocol, int port);

2. Managing protocol handlers with the method:
public void addProtocol(String protocol, int port);

3. Managing content interpreters with the method:
public void addContentInterpreter(String acl, String language,
String ontology);

4. Managing performative handlers with the method:
public void addPerformativeHandler(String acl, String language,
String ontology, String performative, PerformativeHandler ph);

5. Managing conversation termination with the method:
public void setConvCleanupHandler(ConvCleanupHandler c).

- We used the Stanford KSL Ontolingua ontology editor at [8] to design both the
general QoS ontology and the QoS-broker ontology used by the language inter-
preter. Then, we extended our simulation program to a larger TCP/IP network
with facilitators at different locations communicating in KQML. A couple of

640 M.T. Kone and T. Nakajima

Message Sender Message Receiver

Message flow

Protocol Manager

KTP Handler

ATP Handler

OTP Handler

Naming Service

Performative Handler

Content Interpreter

Conversation Pool

Conversation Policy

Conversation

KQML manager

Protocol Manager

KTP Handler

ATP Handler

OTP Handler

Naming Service

Performative Handler

Content Interpreter

Conversation Pool

Conversation Policy

Conversation

KQML manager

Message Transfer Message Transfer

Fig. 8. Structure of JKQML

networks with different characteristics (throughput, delay, jitter, and loss) were
discovered successfully and displayed on a local user interface. Figure 5 and fi
gure 4 illustrate some transactions between the participating agents.

4 Issues and Perspectives

In an open and heterogeneous environment like the Internet, agents that interact
and coordinate their activities face some major challenges:
- How can they find one another and specially, locate the facilitators? As the
number of facilitators grows, finding their location becomes a real concern. The
idea of introducing a facilitator directory that forwards external inquiry to all
facilitators across the Internet could address this problem.
- Although many ACLs exist today, the communication language chosen should
express concisely the message content of an agent. That is to say, the message
semantics of an ACL must be consistent across platforms.
- With any kind of message transport protocol (KQML transport protocol (ktp)
or agent transport protocol (atp)), the issue of fault tolerance due to network
failure remains. Multi-agent systems must rely on a robust and reliable environ-
ment. However, the heterogeneous nature of the Internet offers no guaranty.
In addition to negotiation on the network layer, we are looking forward to ex-
tending our model to the application and system layers as well. This way, with
a suitable QoS translation scheme between these layers, it is possible to cover a
complete end-to-end QoS negotiation.
We intend to investigate the alternative of mobile agents as a message transport
protocol. Enabling facilitators to move around the network, deliver information
and collect advertisements like mobile agents is an option we are interested in.
These mobile facilitators can interact on site with local QoS brokers and ser-

An Agent-Based Framework for Large Scale Internet Applications 641

vice agents. In addition, as the new Foundation for Intelligent Physical Agents
(FIPA) ACL standard is emerging, we are looking forward to implement our
model in this language.

5 Related Work

A number of service discovery protocols have been implemented for different
platforms. Some examples are the Service Location Protocol (SLP) designed by
the Internet Engineering Task Force, the Dynamic Host Configuration Protocol
(DHCP), the CORBA architecture [7] with its Trader and Naming Services, and
recently Sun Microsystems’s Jini.

5.1 The Service Location Protocol (SLP)

The idea of using multiple agents for the discovery of services across a local area
network has already been used by the SLP. In this model, a user agent (UA)
acts on behalf of a user or client in need of a service while a service agent (SA)
declares its services to a directory agent previously discovered. In addition, a
directory agent (DA) accepts requests and registrations from a UA or a SA.
There are two fundamental differences between the SLP scheme and our ap-
proach: SLP uses multicast and DHCP protocols to initialize its scalable service
discovery framework. However, as DHCP cannot extend to the entire Internet,
SLP is unable to scale to the entire Internet. A user agent itself must send its
queries to a remote DA when a service is not available locally. In contrast, our
approach considers a federation of services as illustrated in figure 7 with several
facilitators. Only facilitators may forward requests from one region to another.
In addition, we use KQML messages to convey these requests across the Internet.

5.2 The CORBA Trader and Naming Services

CORBA is a middleware that enables a client application to request informa-
tion from an object implementation at the server side. In addition, CORBA can
advertise available objects and services on behalf of object implementations via
a Common Object Services Specifications (COSS) service called the Trader Ser-
vice. Services are registered with the Naming Service by specifying its name and
object reference. A client who wishes to access the service specifies the name of
the service, which the Naming Service uses to retrieve the corresponding object
reference. Whereas services are registred with the Trader Service by specifying
its service type, properties and object reference. A client who wishes to access the
service, specifies the type of the service and constraints. Therefore, the Trader
Service can be viewed as a yellow pages phone book.
In spite of the similarities in both approaches, it is important to note that the
main difference between our system and CORBA services is that we are deal-
ing with messages which bear meaning and are organized in conversations. The
players in our system are agents that are engaged in structured conversations

642 M.T. Kone and T. Nakajima

while CORBA enables applications to exchange only objects, data structures,
and propositions.

5.3 Jini

Jini is a network operating system by Sun Microsystems aimed at a broad range
of electronic devices and software services assembled in a single distributed com-
puting space. Although the components work together to serve a common goal,
they’re still identified as separate components on a network. The Jini discovery
architecture is similar to that of SLP. Jini agents discover the existence of a
Jini Look Up Server, which collects service advertisements like the facilitators
in our system. Jini agents then request services on behalf of client softwares by
contacting the Look Up Server.

6 Conclusion

In this paper, we have presented a framework for resource discovery and quality
of service negotiation over the Internet. The main point is that our framework
relies on the concept of multi-agent systems and agent communication language.
In contrast to automatic resource discovery protocols like the SLP, our scheme
scales to the entire Internet. To illustrate its effectiveness, we designed a proto-
type based on the IBM Java KQML API with several agents: user agent, QoS
broker agent, facilitator agent, and network agents that interact in the KQML
agent communication language. Although this approach may look attractive, its
main drawback lies in the important number of facilitator agents that the system
must deal with. In the future, we intend to let these facilitators move from host
to host with information just like mobile agents.

References

1. Droms R.: rfc1541. Technical report, IETF, Network Working Group,
http://www.cis.ohio-state.edu/htbin/rfc/rfc1541/.html, October 1993.

2. Genesereth R. Michael, and Ketchpel P. Steven: Software agents. Communi-
cations of the ACM, 37:48, July 1994.

3. Patil, Ramesh S. , Fikes, Richard E.: The DARPA knowledge sharing Effort:
Progress Report, In: Michael Huhns and Munindar P. Singh (Ed.), Readings
in Agents, Morgan Kaufmann, 1998, pp 243-254.

4. Perkins C.: SLP white paper, Technical report, Sun Microsystems,
http://playground.sun.com/srvloc, 1998.

5. Keith W. Edwards.: Core Jini, Sun Microsystem Press, June 1999.
6. Kone Tadiou Mamadou, Akira Shimazu, and Tatsuo Nakajima : The State of

the Art in Agent Communication Languages. (submited) to Knowledge and
Information Systems, 1999.

7. Randy Otte, Paul Patrick, Mark Roy : Understanding CORBA, The Common
Object Request Broker Architecture, Prentice Hall, 1996.

8. Stanford KSL Network Services : Ontolingua, ontologies editor. http://www-
ksl-svc.stanford.edu:5915/.

9. Tsuchitani Hajime and Furusawa Osamu : JKQML. AlphaWorks, IBM, 1998.

	Introduction
	Agent-Based Systems
	Multi-agent Systems
	Agent Communication Languages

	Multi-agent System-Based QoS Negotiation
	The Problem
	Concepts and Framework Description
	Implementation

	Issues and Perspectives
	Related Work
	The Service Location Protocol (SLP)
	The CORBA Trader and Naming Services
	Jini

	Conclusion

