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Abstract. In this paper, we focus on the determination of end-to-end
delay bounds for FIFO accumulation networks with leaky bucket con-
strained sources, including IP and ATM network cases. We determine an
upper bound for the overall end-to-end delay and prove its accuracy to
approximate the exact maximum end-to-end delay for accumulation net-
works of any size. This is achieved through an original trajectory analysis
approach. Numerical studies further illustrate this point. This extends
our previous results for the two-server and proves that this bound may
be used as an accurate criterion for a CAC algorithm providing a deter-
ministic QoS guaranteed service.

1 Introduction

The design and operation of multi-service networks providing Quality of Service
(QoS) is a challenge in which Call Admission Control (CAC) algorithms are the
key issue for non-adaptive traffic sources. Invoking the CAC procedure consists
mainly in two basic procedures : determining a bound (on loss rate or delay for
instance) on the path of the new source and checking the non-violation of the
QoS of already established connections.
In this paper, we focus on the determination of deterministic end-to-end delay
bounds in a FIFO accumulation network. Note that by doing so, we do not
address the entire CAC problem, as the latter may not be reduced to the deter-
mination of some bounds. Most of the studies avoid this problem because they
model the network through a single server (refer to the algorithms presented in
[9,8]) whereas CAC is an end-to-end issue. An accumulation or concentration
network is a tree network where sources may enter at any node but exit at the
root node only. Though not the case in general, this topology is not only of the-
oretical interest. For instance, a Multipoint-to-Point Tree (MPT) is considered
in [1] for the routing problem of IP over ATM networks.
We assume a fluid flow model and leaky bucket constrained sources. This model
perfectly fits ATM networks (for VBR sources)due to the small cell size com-
pared to the servers’ rates. The results we obtain in the present work may also
be applied to IP networks (for sources declared via a TSpec [4]) with some more
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caution due to the variable size of the packets (see for instance [7] for the trans-
lation between a fluid and a packet model).
The remainder of this paper is organized as follows. In Sect. 2, we review the re-
lated work in the field of deterministic analysis. In this context, Network Calculus
[5,2] provides a useful approach, based on service curves, to obtain deterministic
bounds. We evaluate this technique for the present problem in Sect. 3. In Sect.
4, we present and discuss an upper bound on the end-to-end delay. The related
additive property is studied in Sect. 5. In Sect. 6 and 7, we generalize the results
of [10] obtained in the two-server case. In Sect. 8, we further generalize these
results to cover the case of general accumulation networks. Conclusion and hints
for future works are eventually given in Sect. 9.

2 Related Work

The FIFO discipline is not able to offer a differentiated service. This is why
deterministic studies have focused mainly on the design and evaluation of new
service disciplines such as Packet Generalized Processor Sharing [6] which pro-
vides end-to-end delay bounds for leaky bucket sources.
Cruz [5] provides results concerning the burstiness characterization of flows in-
side a FIFO network. However, the bounds derived are not tight enough since
they are obtained through summation of local worst-cases. The service curve and
network service curve paradigms (see Sect. 3) enable us to obtain tighter bounds.
A recent and major work in the field of FIFO networks is [3]. The authors show
that if the peak rates of sources in a general FIFO network are constrained by
a certain value (related to the number of flows that the source meets on its
path), then the network is stable and bounds on end-to-end delays and backlogs
are obtained. This is a major result since it applies to FIFO networks with a
general topology, but with strictly deterministic sources. By contrast, we focus,
in this work, on variable bit rate sources but for the more restrictive class of
accumulation networks.

3 A Service Curve Approach

Network Calculus provides a straightforward way to model sources and network
elements, through an arrival and a service curve respectively. It formulates the-
orems to derive bounds on backlog and delays. The arrival curve of a source
represents, intuitively, an upper bound on the amount of traffic the source can
send on any time interval. The service curve represents a lower bound on the
service the source may expect.
A given flow crossing n network elements offering (βi)i∈{1,n} as service curves,
may consider the network as a unique element with a (network) service curve
which is the convolution of the individual service curves. The interest of the
network service curve is that it provides a tighter bound on the end-to-end delay
than summing the local bound that may be obtained at each server. To apply
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this technique in the case of FIFO networks, a first step is to derive the ser-
vice curve received by a given flow sharing a FIFO server with another flow, as
illustrated next.

3.1 Service Curve in a FIFO Environment

Consider 2 sources, S1 and S2 (constrained by α1 and α2) and one FIFO server
of capacity C. Let λC be the function such that : ∀t ≥ 0, λC(t) = Ct, and Ri

(resp. R∗
i ) the cumulative rate function of Si at the input ( resp. output) of the

server. For a given time t, let us denote s0 the last time there was no backlog
(s0 ≤ t). Thus, R∗

1(s0) = R1(s0) and R∗
2(s0) = R2(s0). Since the server is work

conserving, this yields :

R∗
1(t) − R∗

1(s0) + R∗
2(t) − R∗

2(s0) = C(t − s0) . (1)

Causality also implies that ∀t, R∗
2(t) ≤ R2(t). Thus :

R∗
2(t) − R∗

2(s0) ≤ R2(t) − R2(s0) . (2)

Now, since S2 is constrained by α2 and the server rate, we obtain :

R∗
2(t) − R∗

2(s0) ≤ min(C(t − s0), α2(t − s0)) . (3)

Mixing equation (1) and (3), we obtain :

R∗
1(t) − R1(s0) ≥ C(t − s0) − min(C(t − s0), α2(t − s0)) . (4)

Let us define (x)+ as max(0, x). A service curve for S1 is thus β1 = (λC −
α2)+.

3.2 Discussion

The service curve obtained is thus conservative. Indeed, if S2 were preemptive
over S1, the service curve would be the same since, in this case, S1 receives only
the remaining capacity unused by S2. Besides, assume that S1 and S2 transit in
a second server where they mix with a third source. To derive a service curve for
S1 in the second server, an arrival curve for S2 at the input of the second server
is required. Network Calculus provides a way to derive this arrival curve from
the arrival curve of S2 at the input of server 1 and its service curve in server 1.
But since the service curve for S2 at server 1 is pessimistic, the arrival curve for
S2 at the second server will also be pessimistic. Thus, the conservative aspect of
the result increases with the size of the network. This approach leads inevitably
to pessimistic results. For instance, consider a single server and assume S1 and
S2 have the same traffic descriptor, namely (p, R, M), where p is the peak rate
of the source, R the leak rate of the bucket and M its depth. Then, the following
relation exists between the bound on delay DSC obtained with the service curve
approach and the exact value of the maximum delay Dmax : Dmax = C−R

C DSC .
Thus, when R → C

2 (stability requires that C > 2R), DSC → 2Dmax.
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The drawbacks of this method lead us to envisage a new approach presented in
the next section. Note, however, that we have not proved that it was not possible
to find a better service curve. It remains an open problem.

4 The Additive Bound

Consider first a tandem accumulation network with p servers and n sources.
A superposition of leaky bucket constrained sources may be seen as a single
multi-leaky bucket constrained source with arrival curve being the sum of the
individual arrival curves. We can thus group the sources entering the network at
a given node and consider a network with p servers and p sources.
In [10], we show that if the input of a server is leaky bucket constrained, so is
the output. When applied to node j of the considered accumulation networks,
we obtain that the source seen at the input of this node is multi-leaky bucket
constrained. Application of Network Calculus gives that the worst-case source at
node j (which generates the maximum local delay) is obtained when the multi-
leaky bucket source is greedy (a leaky bucket constrained source is greedy when
it emits its bits as soon as possible : it thus first emits its maximum burst size at
it peak rate p and then emits at its mean rate R). A recursion from server j to
server 1 proves that if all the sources crossing node j are greedy and synchronous,
i.e. they begin their emission at the same time, then the aggregated source at
the input of node j is the worst-case source. We thus obtain the local maximum
delay at node k ∈ [1, j] is achieved when all the sources entering the network
before at node k ∈ [1, j] are greedy and synchronous. The sum of these maximum
local delays provides an upper-bound on the maximum end-to-end delay in the
system. We call it the Additive Bound. We have only considered tandem networks
so far but the results also hold for a tree network : the maximum local delays are
obtained when all the sources entering the network are greedy and synchronous.
Since the aggregated source seen at the output of a subtree of the accumulation
network is multi-leaky bicket constrained, we only have to test the accuracy of
the Additive Bound for tandem accumulation networks.

5 Additivity Property and Networks Classification

5.1 Definition

We term Additivity the following property : “There exists a trajectory of the
system such that a bit experiences an end-to-end delay equal to the Additive
Bound”. By extension, we say that a network is additive if it exhibits the Addi-
tivity property. It is non-additive otherwise.

5.2 Intrinsic Parameters (tmax, dmax):

Let us denote greedy trajectory, the trajectory of the system where all the sources
are greedy and synchronous. This yields the maximum delay on each node (see
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Sect. 4). For this greedy trajectory and for each node j, we use the following
parameters : dj max, the maximum local delay and tj max, the time where the
bit experiencing dj max arrives at node j (see Fig. 1).

C

d

j

j

j max

t
j max

α

Fig. 1. Intrinsic Parameters

5.3 Networks Typology

In [10], we proved that a two-stage network is additive if and only if t2 max ≤
t1max + d1max. This condition can be verified easily with the greedy trajectory
of the system. We also characterize the “additive trajectory” : S1 and S2 greedy
respectively from times θ1 = 0 and θ2 = t1 max + d1 max − t2 max.
By extension, any general tandem accumulation network can be partitioned in
a set of subnetworks for which the following property either holds or not :

Property 1. For all adjacent servers j and j+1, t(j+1) max ≤ tj max+dj max .

6 Additive Networks

We generalize here the result obtained for the two-server case. Consider an accu-
mulation network with p servers for which Prop. 1 holds. Let us define (θj)j∈{1,p}
as follow :

1. θ1 = 0
2. θj+1 = θj + (tj max + dj max − t(j+1) max), j ∈ [1, p − 1]

If Sj is greedy from t = θj , (note that θj+1 ≥ θj), the bit experiencing d1 max in
the first server experiences dj max at node j for all j ∈ {1, p}. Thus its end-to-
end delay is : Dmax =

∑p
j=1 dj max. An accumulation network for which Prop.

1 holds is thus additive. Besides, since the only way for a bit to experience∑p
j=1 dj max is to experience dj max at server j, for all j ∈ {1, p}, it follows that

a network that does not fulfill Property 1 is not additive.
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7 Non-additive Networks

In this section, we generalize the lower bound building method developed for a
two-server network to accumulation networks of any size and use it to test the
accuracy of the Additive Bound in the case of non-additive networks. A direct
generalization would hide the difficulty of the construction of the trajectory. We
thus first present the three-server case.

7.1 Three-Server Case

Lower Bound. Consider a two-stage network. If it is non-additive, this means
intuitively that the burst necessary to obtain d1 max is not sufficient to obtain
d2 max in the second server(considering the greedy trajectory of the system),
since when all the bits of this burst have reached the second server, the delay
that can be obtained is less than d2 max. The idea is then to postpone the
emission of this burst so as to synchronize the local maximum delays, knowing
that the delay on the second server will necessarily be less than the delay in the
greedy synchronous case.
Consider now a network with three servers and three sources (Si)i∈{1,...3} (Si

entering at node i). The trajectories of the sources are built so as to maximize
the amount of bits in buffer j when the reference bit, i.e. the one experiencing
d1 max in the first server, arrives.

Trajectory of Sources. Consider the greedy trajectory of S1, as given in Fig.
2. It can be divided into three parts. The first part corresponds to the part of the
trajectory necessary to achieve the local maximum delay d1 max. The second part
corresponds to the time necessary for the last bucket of the sources composing
S1 to empty. In the last part, all the sources composing S1 have reached their
mean rate.

Now consider the trajectory of S1 given in Fig. 3. S1 is an aggregation of n1
sources, with each source controlled by a single leaky bucket with parameters
(pk, Rk, Mk) for k ∈ {1, . . . n1}. With the greedy trajectory of the system, the
source with index k emits at its peak rate pk during [0, Mk

pk
] and then emits at

its mean rate Rk. Let us define :

TS1
M
p

= max
k∈{1,...nS1}

(Mk

pk

)
. (5)

TS1
M
p

corresponds to the beginning of the third part defined in Fig. 2. The modified

trajectory is built by changing the beginning of emission of the sources composing
S1 as follows :

1. if Mk

pk
≤ t1 max then the source :

(a) emits at its mean rate during [0, TS1
M
p

− t1 max],

(b) becomes greedy for t ≥ TS1
M
p

− t1 max; this is possible since its bucket is

still full at this time.
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Fig. 2. S1 initial trajectory
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M/p
T 1 max

t S 1

M/p
T-

Fig. 3. S1 modified trajectory

2. if Mk

pk
≥ t1 max, then the source :

(a) emits at its mean rate during [0, TS1
M
p

− Mk

pk
],

(b) becomes greedy for t ≥ TS1
M
p

− Mk

pk
.

The modified trajectory has two parts (see Fig. 3) :

1. the first part where some sources emit at their peak rate whereas others emit
at their mean rate. This part corresponds to the second part of the initial
greedy trajectory with a slight modification : if a source emits at its peak
rate during τ1 and then at its mean rate during τ2 in the initial trajectory,
then, in the modified trajectory, it first emits at its mean rate during τ2 and
then at its peak rate during τ1. Due to this inversion between τ1 and τ2, we
call inverted part this part of modified trajectory.

2. the second part is strictly equivalent to the first part of the initial trajectory.

Note that, as with the initial trajectory, the last bucket empties at time t = TS1
M
p

.

A modified trajectory for S2 and S3 is built using the same method. We now fix
the synchronization parameters.

Synchronization of Sources. With the modified trajectory given above for
S1, the last bit of the burst (reference bit) experiences a delay d1 max. S2 is
synchronized in such a way that the end of its burst corresponds to the arrival
of the reference bit. This bit will then experience d2 ≤ d2 max in the second
server. Since, a priori, TS1

M
p

6= TS2
M
p

, using the previous synchronization method

leads one of the sources to start emitting before the other. Assume S2 starts its
emission before S1. To maximize the number of bits backlogged in server 2 at
the time where the reference bit arrives, it is possible to modify the trajectory
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of S1 such that it emits at its mean rate before the beginning of the modified
trajectory, in an interval of length TS2

M
p

−TS1
M
p

. This trajectory of S1 is valid with

respect to its leaky bucket constraint.
The same method is applied to synchronize S3, as shown in Fig. 4.

3

S
2

t
3 max

3
S

d

2d

1 maxdS 1

d
1 max

t
3 max

2 max
t

2 max
t

3 max
t

2d

d
1 max

d1 max

Fig. 4. Sources synchronization

Result for Delay. The lower bound on the maximum end-to-end delay is ob-
tained as the end-to-end delay of the reference bit in the modified trajectory.
Since all the sources are leaky bucket constrained, the initial and modified tra-
jectories described above correspond to piece-wise linear curves. Computation of
the intrinsic parameters as well as the delay of the reference bit is thus straight-
forward from the algorithmic point of view.

7.2 Numerical Results

Our aim is to estimate the accuracy of the Additive Bound in a non-additive
network with the lower bound presented above. Accuracy means here the relative
difference between the Additive Bound and this lower bound. A key problem is
the choice of the non-additive networks.

Networks Building Method.
We consider accumulation networks with p = {4, 5, 8, 10} servers. For each

server, we draw the number of sources entering at this stage in a uniform fashion
in the interval [1, 5]). Then, we draw the characteristics of the sources in Table
7.2. We now have to choose the capacities of the servers. A necessary condition
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Table 1. Sources descriptors

Peak rate p Mean rate M Burstiness M

10 0.1 10
100 1 100

1000 10 1000

for a network to be additive is that the rate of the servers increases. Conversely,
if capacities decrease, the network is non-additive (sufficient but not necessary).
We choose to give every server the same rate which is the sum of the mean rate of
all the sources times γ = 1.01 (γ is used to ensure stability). This sum represents
the minimum capacity of the last server in the case of accumulation networks .
Doing so, the most important part of the end-to-end delay is concentrated at the
end of the network. To obtain some significant results, we choose to calculate the
relative range, which is the difference between the lower bound and the Additive
Bound divided by the Additive Bound, for this initial system, i.e. a particular
random generation of the sources descriptors and capacities of servers. We next
modify the network by enforcing some of the sources to modify their entering
node. This is achieved through the following algorithm :

1. Step 1 : one computes the relative range for the initial network.
2. Step 2-9 : each source is removed from node j to node j − 1 with probability

0.1.

Applying this algorithm, the accumulation network heuristically “worsens” and
thus the relative range should increase.

Results. The results, presented in Fig. 5, are obtained for 10000 successive
random generations of networks. The x-axis is indexed following the steps of the
algorithm. For each step and for the different network sizes, we compute the
mean relative range.

Discussion. For non-additive accumulation networks, we have an upper bound
on the end-to-end delay, the Additive Bound, and a heuristically obtained lower
bound. The maximum, exact, end-to-end delay over all possible trajectories of
the system is thus between these two bounds and gives full meaning for consid-
ering the relative range as a performance parameter.
The results obtained confirm the good accuracy of the lower bound. The mean
relative ranges remain reasonable even for large size of networks. The maximum
error, not presented here is no more than 67%. It thus remains within the same
order of magnitude. We now address the case of general accumulation networks
which are neither strictly additive nor strictly non-additive.
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8 General Accumulation Networks

Our expectation is that the Additive Bound always represents an accurate upper
bound on the maximum end-to-end delay for accumulation networks. Proving
such a statement requires an exhaustive study, which is not possible. We restrict
our study to a specific class of accumulation networks, that we term well-formed
accumulation networks. A well-formed accumulation network is an accumulation
network where the following rule applies : capacities of the servers follow an in-
creasing fashion from the leaves to the root of the tree.
We extend here the previous results for well-formed tandem accumulation net-
works using the same lower bound as in the non-additive case. Indeed, the
method used to build the trajectory leading to the lower bound is based solely
on the set of intrinsic parameters (tj max, dj max) and do not rely on any as-
sumption concerning the additivity of the network. It may thus be applied in
the case of well-formed accumulation networks.

8.1 Networks Building Method

The method used to generate a well-formed network is the following :

1. for each server, the number of sources (between 1 and 5) entering at this
node and their characteristics are drawn (see Table 7.2).

2. the rate of each server is then computed as the sum of the mean rate of the
sources crossing this node times a coefficient α. α can take one of the three
following values {1.1, 1.5, 2.0} which, for each set of sources, leads to three
different networks.
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8.2 Results

We present hereafter the numerical results obtained for networks of various sizes
(from 3 to 20 servers). For each network size, 10000 networks are drawn. The per-
formance parameter computed for each network is the relative range between the
lower bound and the Additive Bound. The average relative ranges are presented
in Table 8.2.

Table 2. Average relative ranges (in %) with networks of different sizes

Size=3 Size=5 Size=10 Size=15 Size=20
α = 1.1 0.72 1.29 2.03 2.89 3.87
α = 1.5 1.97 3.36 5.67 8.42 11.23
α = 2.0 1.96 3.13 5.06 7.64 10.18

8.3 Discussion

The results shown in Table 8.2 strongly confirm our claim : the Additive Bound
represents a good criterion for a deterministic CAC (a CAC based on a de-
terministic delay bound). They are also interesting since the way well-formed
accumulation networks are built here is close to a real dimensioning process.
Indeed, α−1, which is the rate of the server divided by the sum of the average
rates of the sources it serves, represents the average activity rate of the servers
and tuning activity rates of servers at a given rate is a common procedure for
networks dimensioning.
Compared to the results obtained in the previous section, the relative ranges ob-
tained here are significantly smaller : for instance, for a network with 10 servers,
the relative range was close to 50% whereas here it is close to 5%. This is due to
the method the server rates are assigned in each case. In the previous section, all
the servers had the same capacity which lead to a strictly non-additive network,
whereas here, the rates increase from one server to another, which is a necessary
(though not sufficient) condition to obtain additive networks.

9 Conclusion

In this paper, we focused on the problem of determining an end-to-end de-
lay bound in an accumulation network. We first evaluate the direct service
curve approach provided by the Network Calculus theory and stress the over-
conservatism of the obtained results. We then propose a new approach, based
on a trajectory analysis and the Additivity property introduced for a two-server
case in [10]. We show that the Additive Bound (sum of the local maximum de-
lays) represents a good approximation for the maximum end-to-end delay.
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Future work will address the problem of designing a CAC procedure based on
the Additive Bound. Preliminary results underline the problem of checking the
non-violation of the QoS of the already established connections in a network
environment. It seems that a heavy updating procedure needs to be performed
after each new source acceptance. Extension of the network topologies is also
an important point to consider. Up to now, we have addressed accumulation
networks. We now wish to investigate the case of general networks topologies.
However, the Additive Bound may be less accurate due to the fact that sources
mixing with the reference source may leave this source before its exiting node.
Preliminary results indicate that the computation of the local maximum delay
is a very difficult task in a general FIFO network with leaky bucket constrained
sources.
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