
New Distributed Multicast Routing
and Its Performance Evaluation

Takuya Asaka123, Takumi Miyoshi23, and Yoshiaki Tanaka23

1 NTT Service Integration Laboratories
9-11, Midori-Cho 3-Chome, Musashino-Shi, Tokyo, 180-8585 Japan.

2 Global Information and Telecommunication Institute, Waseda University
3-10, Nishi-Waseda 1-Chome, Shinjuku-Ku, Tokyo, 169-0051 Japan.

3 Okinawa Research Center
Telecommunications Advancement Organization of Japan

21-1, Nishi-Waseda 1-Chome, Shinjuku-Ku, Tokyo, 169-0051 Japan.

Abstract. With conventional dynamic routing algorithms, many query
messages are required in a distributed environment for efficient multi-
cast routing of any traffic volume. We have developed a dynamic routing
algorithm that uses a predetermined path search in which an appro-
priate multicast path is dynamically constructed by searching only a
few nodes. This algorithm can construct an efficient multicast tree for
any traffic volume. Simulation has shown that the proposed algorithm is
advantageous compared with conventional dynamic routing algorithms
when nodes are added to or removed from the multicast group during
steady-state simulation.

1 Introduction

Future computer-network applications such as teleconferencing or remote collab-
oration will rely on the ability of networks to provide multicast services. Mul-
ticasting is expected to become widely used [1,2,3], and is well suited to these
services because it uses network resources efficiently. In multicasting, a point-
to-multipoint (multicast) connection is used to copy packets only at branching
nodes, which ensures network efficiency. Naturally, the smallest possible amount
of network resources should be used to set up the multicast connection.

Multicast routing problems are either static or dynamic. In static routing
problems, the members of the multicast group remain unchanged during the life-
time of the multicast connection. In dynamic routing problems, members can
join or leave the group during the lifetime of the connection. Dynamic multi-
cast routing is important for actual multicast applications and is supported by
protocols in ATM network [3] and Internet protocols [4,5,6].

Here, we focus on a dynamic multicast routing algorithm that can satisfy the
following requirements.

(1) Minimized average multicast tree cost. Every link has a cost (or a metric),
and the tree cost is the sum of the costs for all links included in the multicast

G. Pujolle et al. (Eds.): NETWORKING 2000, LNCS 1815, pp. 835–846, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

836 T. Asaka, T. Miyoshi, and Y. Tanaka

tree. Minimizing the tree cost ensures efficient use of bandwidth. This is
called the dynamic Steiner problem.

(2) Scalability in a distributed environment. A central server should not be used
to control joining nodes because a large-scale network could overload the
server, thus degrading performance. Moreover, minimizing the overhead of
nodes is important from the viewpoint of algorithm scalability even if there
is no central server does.

(3) Robustness against the number of joining nodes. The number of joining
nodes strongly affects the performance of conventional algorithms. The per-
formance should be independent of the number of joining nodes.

(4) Minimized worst-case cost of the multicast tree. The worst-case cost pro-
duced by the algorithm should be theoretically bounded as small as possible.

Many dynamic multicast routing algorithms have been proposed [4,5,6,7,8,9]
[10,11,12,13,14]. However, none of there algorithms can satisfy all of the above
requirements. The greedy algorithm [8,9] selects the shortest path to an existing
multicast tree when a node is added. It can construct a near-optimal multicast
tree, but requires many query/reply messages between nodes when implemented
in a distributed environment [13,14]. Thus , the algorithm is not scalable in a
distributed environment. The pruned shortest-path tree algorithm [4,5,6,7] finds
the shortest path from the source node (or the center node) to the nodes in
the multicast group when a node is added to the multicast tree. This algorithm
cannot construct an appropriate multicast tree, though, from the viewpoint of
tree cost. The virtual trunk dynamic multicast (VTDM) routing algorithm [10]
constructs multicast trees based on the virtual trunk, which is the tree of the
underlying graph. However, the “trunk number” for constructing the virtual
trunk must be determined according to the estimated number of nodes that will
join and it is not flexible.

We have developed a dynamic routing algorithm that can satisfy all four
of the about requirements. It uses a predetermined path search where only a
few nodes are searched to determine to which existing node a newly added node
should be connected. In this algorithm, the searched nodes are on predetermined
paths: the paths from new added nodes to the source node on the minimum-
spanning tree and the shortest-path tree. The node and network overheads are
small because only a few nodes are searched. The performance is similar to
the greedy algorithm but does not depend on the number of joining nodes.
Our simulation has shown that our algorithm is advantageous when nodes are
added to or removed from the multicast group in the steady state. We discuss
the competitive ratio of our algorithm, and show its advantage over the greedy
algorithm.

2 Problem Definition

To define the dynamic multicast routing problem formally from the viewpoint
of minimizing multicast tree cost, we use the terminology of graph theory for

New Distributed Multicast Routing and Its Performance Evaluation 837

the models. In the model used for the conventional dynamic multicast routing
problem, the network is modeled as a graph whose edges have costs. If nodes can
be added or removed during the lifetime of the multicast connection, this problem
becomes the dynamic multicast routing problem, i.e., the dynamic Steiner tree
problem. Let R = {r1, r2, ..., rK} be a sequence of requests, where ri is either
adding or removing a destination node to or from the multicast group. Let Si

be the set of nodes in the multicast group after request ri has been made. In
response to request ri, multicast tree Ti is constructed using a dynamic multicast
routing algorithm. The dynamic multicast routing problem can thus be formally
defined as follows.

Given graph G = (V, E), a nonnegative weight for each e ∈ E, and
Z ⊆ V , and a sequence R of requests, find a sequence of multicast trees
{T1, T2, ..., TK} in which Ti spans Zi and has minimum cost.

The dynamic multicast routing problem considered in this paper does not
allow re-routing of existing connections when additional requests are received.
One node is the source for a multicast communication, and this node cannot be
removed from the multicast group during the life of the multicast connection.

In this paper, vertices that are included in a multicast tree are called existing
nodes, and the source node is an existing node. Vertices that do not participate in
a multicast group but that are included in the multicast tree are called interme-
diate nodes. Moreover, vertices that are neither an existing nor an intermediate
node are called non-existing nodes.

3 Conventional Algorithms

Several dynamic multicast routing algorithms have been reported [8,9,10,11,12].
As mentioned earlier, the greedy algorithm [8,9] selects the shortest path to
an existing multicast tree when adding a node. The shortest path between a
pair of nodes can be calculated using Dijkstra’s algorithm before routing. In the
greedy algorithm, selecting a new path is the best way to add a node. However,
when greedy algorithm is implemented in a distributed environment, a newly
addednode must flood the entire network with query messages [13]. That is, a
newly added node sends a query message to all its neighbors on the shortest-
path tree rooted at the node, and this continues until the query message reaches
either an existing node or a leaf node of the shortest-path tree. Consequently,
there is a large processing overhead for the query message in each node. The
network overhead becomes particularly large when there are many non-existing
nodes. As another approach [15], a manager router is introduced to control the
addition and removal of nodes. However, the processing overhead of the manager
router is high when there are many nodes in the network, and a failure of the
manager router would cause a fatal error in the construction of the multicast
tree.

As mentioned above, the pruned shortest-path tree algorithm (pruned SPT)
[4,5,6,7] finds the shortest path from a source node [7] (a “core” in CBT [4]

838 T. Asaka, T. Miyoshi, and Y. Tanaka

or a “rendezvous point” in PIM-SM [5]) to the nodes in the multicast group
when a node is added to the multicast tree. The pruned SPT algorithm has
been implemented as an actual routing protocol [4,5,6] because it is easier to
implement than the greedy approach. The shortes t-path tree is spanned from
a source node (or a core or rendezvous point) to every node in the multicast
group. Moreover, the multicast tree is obtained by deleting nonessential edges.
The cost of a multicast tree made using this approach is higher [16] than for one
made using the greedy approach.

The virtual trunk dynamic multicast (VTDM) routing algorithm [10] con-
structs multicast trees based on the virtual trunk, which is the tree of the under-
lying graph. The virtual trunk and the multicast tree that uses it are constructed
as follows:

Step 1: Find the shortest paths for all pairs of nodes. Count the number of
shortest paths passing through each node.

Step 2: Define a set F as vertices having the top dθNe largest numbers; these
vertices are called virtual-trunk nodes.

Step 3: Construct a complete graph for F by replacing the shortest paths
between pairs of vertices in G with distances between pairs of vertices. Find
the minimum-spanning tree for the complete graph.

Step 4: Convert edges in the minimum-spanning tree back to the corresponding
shortest paths in the graph G. Run the minimum-spanning tree algorithm
and remove any unnecessary nodes or links. The obtained tree is called the
virtual trunk.

Step 5: Connect nodes not in the virtual trunk to the nearest node in the
virtual trunk.

N is the number of nodes in graph G, and parameter θ (0 ≤ θ ≤ 1) determines
the number of trunk nodes. When θ = 0, the VTDM algorithm is the same
as the pruned SPT because only the source node is selected as a trunk node.
Similarly, when θ = 1, the VTDM algorithm is the same as the pruned minimum-
spanning tree (pruned MST), where the MST is used instead of the SPT as in the
pruned SPT. In this algorithm, θ must be determined according to the estimated
number of nodes that will be join. However, actual traffic estimation is difficult,
and setting θ is a complicated task for network management.

The other conventional dynamic multicast routing algorithms take differ-
ent approaches. For example, some allow re-routing of multicast connections
[11,12,17].

4 Dynamic Multicast Routing Algorithm Using
Predetermined Path Search

Our algorithm is based on the greedy algorithm and is intended to have the
same performance. It uses query and reply messages to obtain membership in-
formation, as does the greedy algorithm. Thus, this approach does not require

New Distributed Multicast Routing and Its Performance Evaluation 839

a manager server for multicast routing. Furthermore, our dynamic multicast al-
gorithm searches only a few nodes to determine which existing node should be
connected. A newly added node connects to this existing node using the shortest
path. The node and network overheads are small because the number of searched
nodes is restricted. An appropriate path is selected based on the current multi-
cast tree. Thus, our algorithm is suitable for a distributed environment.

In this algorithm, two kinds of spanning trees are prepared for the predeter-
mined paths: a minimum-spanning tree and a shortest-path tree having a source
node as a root. Figure 1 shows examples of the MST and SPT. The minimum-
spanning tree can be calculated using either Kruskal’s or Prim’s algorithm with
computational complexity O(m log n), and the shortest-path tree can be calcu-
lated using Dijkstra’s algorithm with computational complexity O(m + n log n).
Our algorithm works as follows.

Step 1: A newly added node sends query messages to nodes on two predeter-
mined paths toward the source.

Step 2: If a queried node is an existing node, it sends a reply message to
the new added node and the query message is not transmitted to the next
node. Otherwise, the query message is transmitted to the next node on the
predetermined path.

Step 3: After the added node receives reply messages from existing nodes on
each predetermined path, it connects to the closest node among the nodes
that sent reply messages.

An example of how this procedure works is shown in Fig. 2. The newly added
node #6 sends query messages to nodes on two predetermined paths toward the
source. First, we describe the case of using the MST as a predetermined path. In
Fig. 2, only node #1 is an existing node. The predetermined path sfor a newly
added node is 〈#6 → #4 → #2 → #1 → source〉. When a new node requests to
join, a query message is transmitted to node #6. Since node #6 is not an existing
node, the query message is retransmitted to the next node. This retransmission
continues until node #1 receives the query message. Node #1 is an existing
node, so it sends a reply message to the newly added node. Next, we describe

Source
#1

#2#3

#4

#5
#6

#7

3

5

3

43

4

4
6

5

2

1

Predetermined
 path (MST)

Predetermined
 path (SPT)

Fig. 1. Example of MST and SPT.

840 T. Asaka, T. Miyoshi, and Y. Tanaka

Source

Newly

#1

#2#3

#4

#5
#6

#7

3

5

3

4
3

4

4
6

5

2

1

(a) Query phase

Existing link
Non-existing link

Existing node
Non-existing node

 added node

Predetermined path (MST)

Predetermined
 path (SPT)

(b) Reply (or connection set-up) phase

Source

Newly

#1

#2#3

#4

#5
#6

#7

3

5

3

4
3

4

4
6

5

2

1

 added node

Fig. 2. Dynamic multicast routing algorithm using predetermined path search.

the case of using the SPT as a predetermined path. The predetermined path for
a newly added node is 〈#6 → #4 → #3 → source〉. The algorithm works similar
to the case of MST and the newly added node receives a reply message from the
source. Thus, the newly added node #6 receives two reply messages from node
#1 and from the source node. Node #1 is closer to the newly added node than
the source, so the newly added node is connected to node #1 using the shortest
path between them.

In this algorithm, the added node should be connected to the source node
using the path that is nearly the shortest path when there are few existing nodes.
On the other hand, when there are many existing nodes, the added node should
be connected to the existing node using nearly the minimum spanning.

Moreover, the node and network overheads are lower than with the greedy
algorithm. This is because only nodes on predetermined paths are searched and
only these nodes receive query messages. In the example in Fig. 2, the proposed
algorithm needs six query messages. These messages are 〈#6 → #4〉, 〈#4 →
#2〉, 〈#2 → #1〉, 〈#6 → #4〉, 〈#4 → #3〉 and 〈#3 → source〉. The greedy
algorithm, on the other hands, needs seven. These are 〈#6 → #4〉, 〈#4 → #2〉,
〈#2 → #1〉, 〈#4 → #3〉, 〈#3 → source〉, 〈#6 → #7〉, 〈#7 → #5〉. Similary, if
node #4 instead of node #6 is newly added to the multicast group, the proposed
algorithm needs four and the greedy algorithm needs seven. As the network size
increases, the advantage of the proposed algorithm increases because the greedy
algorithm broadcasts query messages.

Another version of this algorithm uses only the MST as the predetermined
path, rather than both the MST and SPT. This does not require reply messages
from the existing nodes because a connection set-up message can be used instead.
Since the newly added node need not determine which existing node is nearer.
However, the tree cost may be higher than in the previous case. There is a
trade-off relationship between processing overhead and cost performance.

New Distributed Multicast Routing and Its Performance Evaluation 841

Table 1. Parameters used for simulations.

Parameter Value Parameter Value
N 50 ē 3
α 0.25 k 25
β 0.20 µ 0.9
γ 0.20

5 Simulation Model

We evaluated the performance of our algorithm through simulation, using the
same model and parameters that were used by Lin and Lai [10]. A network is
modeled as a random graph possessing some of the characteristics of an actual
network [7]. The vertices representing nodes are randomly distributed on a rect-
angular coordinate grid, and each vertex has integer coordinates. For a pair of
vertices, say u (0 ≤ u ≤ 1) and v (0 ≤ v ≤ 1), an edge is added according to the
following probability:

Pe(u, v) =
kē

N
β exp

−d(u, v)
Lα

, (1)

where N is the number of vertices in the graph, ē is the mean number of degrees
of a vertex, k is a scale factor related to the mean distance between two vertices,
d(u, v) is the Euclidean distance between vertices u and v, L is the maximum
distance between any two vertices in the graph, and α and β are parameters
(real numbers between 0 and 1). The edge density is increased by increasing the
value of β. The edge density of shorter edges relative to that of longer one s is
decreased by decreasing the value of α. Setting the values of α and β to 0.25 and
0.20, respectively, generates a graph that roughly resembles a geographical map
of the major nodes in the Internet [7]. Once the vertices and edges have been
generated, we can be sure that the graph is composed of only one component.

In the simulations, requests to add or remove a node to/from the multicast
group are periodically generated. We used a probability model to generate the
sequence of requests, i.e., to determine whether each request was to add or
remove. The probability for adding a node was determined by

Pc(q) =
γ(N − q)

γ(N − q) + (1 − γ)q
, (2)

where q is the current number of nodes in the multicast group and γ (0 ≤ γ ≤ 1)
is a parameter (a real number). That determines the size of the multicast group
in equilibrium. Each node had a different rate for joining the multicast, i.e., a
different probability that the ith node would be selected to join. We defined A
as a set of non-joining nodes and the joining rate of the ith node was given by

Pjoin(i) =
{

(1 − µ)µi−1/F0, for i ∈ A
0, for i /∈ A

(3)

842 T. Asaka, T. Miyoshi, and Y. Tanaka

where F0 =
∑

i/∈A(1 − µ)µi−1 and a parameter µ (0 ≤ µ ≤ 1) determined the
bias of the joining rate. In simulations, if a joining event is generated with Pc(q),
a node that will join is determined with Pjoin(i). If a removal event is generated
with Pc(q), a node that will be removed is randomly determined.

We compared our algorithm with four conventional algorithms: the greedy
algorithm, the pruned SPT, the VTDM algorithm, and the pruned MST. For the
VTDM algorithm, parameter θ was set to 0, 0.2, 0.4, or 1. The VTDM algorithm
with θ = 0 corresponded to the pruned SPT, and with θ = 1 it corresponded to
the pruned MST.

In the simulations, the average multicast tree cost was used as a measure
of performance. We generated ten different networks and calculated the average
tree cost. Each multicast connection consisted of a sequence of 20,000 requests
to add or remove nodes. The costs for the first 2,000 requests were not used in
calculating the average costs to eliminate the effect of the initial conditions in
the simulation. Table 1 shows the default values of the simulation parameters.

6 Simulation Results

Basic cases

The relationship between the tree cost and the average multicast group size is
shown in Fig. 3 for 20 and 50 nodes, where the multicast tree costs are normalized
by the costs with the greedy algorithm. In both cases, the cost with the proposed
algorithm was close to that with the greedy algorithm. The reason is as follows. In
the proposed algorithm, the selected node on the tree and the newly added node
are connected using the shortest path. Thus, the proposed algorithm works like
the greedy algorithm. Moreover, the proposed algorithm can find an appropriate
existing node on predetermined paths. When the multicast group is large, an
existing node on the MST is likely to be selected as the node to be connected for
the newly added node. On the other hand, when the multicast group is small,
an existing node on the SPT is likely to be selected as the node to be connected
for the newly added node. Thus, the number of wasteful searches is small.

Furthermore, the proposed algorithm is slightly superior to the greedy algo-
rithm when the group size is small. In these cases, the greedy algorithm may
cause the construction of roundabout routes since many nodes are removed. The
SPT as the predetermined path can prevent the construction of these routes
because nodes nearby the source are selected as nodes to be connected.

The other algorithms, however, could not match the performance achieved
with the greedy algorithm for any multicast group size. These algorithms were
especially poor for extremely small group sizes, and require that the algorithm
or parameters be selected according to the group size. In comparison, our algo-
rithm worked well for any multicast group size without requiring a parameter
for control, and was not greatly influenced by the number of nodes.

New Distributed Multicast Routing and Its Performance Evaluation 843

0.9

1.0

1.1

1.2

0 0.2 0.4 0.6 0.8 1.0

N
or

m
al

iz
ed

 c
os

t

Pruned SPT

VTDM-0.2

VTDM-0.4

Pruned MST

Proposed algorithm

Normalized average multicast group size

0.9

1.0

1.1

1.2

1.3

0 0.2 0.4 0.6 0.8 1.0

Normalized average multicast group size

N
or

m
al

iz
ed

 c
os

t

(b) Cost for 50 nodes(a) Cost for 20 nodes

Fig. 3. Cost of average multicast tree with the conventional and proposed algorithms.

Traffic bias

The relationship between the tree cost and the average multicast group size is
shown in Fig. 4 when the joining rate of each node was varied. The traffic bias
was small when parameter µ for the joining rate was large, and each node had
the same rate when µ = 1.

The tree cost of all the algorithms became worse than that with the greedy
algorithm, but the proposed algorithm was slightly more robust for traffic bias
than the other algorithms. This is because the proposed algorithm - just like the
greedy algorithm - can construct multicast trees depending on existing nodes.

0.9

1.0

1.1

1.2

0.70.80.91.0

Traffic bias: parameter µ

N
or

m
al

iz
ed

 c
os

t

Pruned SPT
VTDM-0.2
VTDM-0.4

Pruned MST
Proposed algorithm

Fig. 4. Comparison of average multicast tree cost at different traffic biases.

844 T. Asaka, T. Miyoshi, and Y. Tanaka

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 q

ue
ry

 m
es

sa
ge

s
Greedy algorithm
Proposed algorithm

0

4

8

12

16

20

0 20 40 60 80 100
Normalized average multicast group size

N
um

be
r

of
 q

ue
ry

 m
es

sa
ge

s

Number of nodes

(a) Different multicast group sizes (b) Different number of nodes

Fig. 5. Number of query messages with the proposed and greedy algorithms.

Number of query messages

The number of query messages with the proposed and greedy algorithms [13]
is compared in Fig. 5. In this figure, the number of query messages is the total
number of query messages received by all nodes when a node is newly added to
the multicast group.

When the multicast group size is small, more messages were needed with
the greedy algorithm (Fig. 5(a)). This is because the greedy algorithm requires
query message transmission until the query message reaches either an existing
node or a leaf node of the shortest-path tree. When the number of nodes was
increased, the number of query messages increased with both algorithms (Fig.
5(b)). However, the increase was smaller with the proposed algorithm than with
the greedy algorithm. Thus, the loads offered to nodes and the network should
always be smaller with the proposed algorithm than with the greedy algorithm.

7 Competitiveness Analysis

Here, we discuss the competitive ratio of the proposed algorithm, defined as the
maximum ratio of the cost of the algorithm over the optimal one. The compet-
itive ratios of conventional algorithms and the proposed algorithm are shown
in Table 2. In the static case, the members of the multicast group remain un-
changed during the lifetime of the multicast connection. In the join-only case,
the members of the multicast group do not quit a session. In the join-remove
case, the members of the multicast group join and quit a session during the
lifetime of the multicast connection. We denote the number of participant nodes
as M in the static case, and the maximum number of participant nodes in the
lifetime of a multicast connection in the join-only and join-remove cases.

The competitive ratios of conventional algorithms are described in [18,19].
The competitive ratio of the greedy algorithm had not been derived in the join-
remove case, but the lower bound of the competitive ratio had been derived. For
the proposed algorithm, the competitive ratio is max(N −M, M) since the worst
case is always bounded by either the pruned MST or the pruned SPT.

New Distributed Multicast Routing and Its Performance Evaluation 845

Table 2. Competitive ratios.

Static Join-only Join-remove
Pruned MST N − M N − M N − M
Pruned SPT M M M

Greedy algorithm 2 − 2/M logM 2M (∗)
Proposed algorithm max(N − M, M) max(N − M, M) max(N − M, M)

(∗)lower bound

Table 2 shows that the greedy algorithm has an advantage over the other
algorithms in the static and join-only cases. On the other hand, the greedy algo-
rithm fails dramatically in the join-remove problem, while the other algorithms
do not become any worse than in the static and join-only cases. Although our
algorithm does not have an advantage over the pruned MST and the pruned
SPT in all cases, it has a large advantage over the greedy algorithm.

8 Conclusion

We proposed a dynamic routing algorithm that uses a predetermined path
search, in which an appropriate multicast path is dynamically constructed by
searching only a few nodes. Simulation showed that the performance of this is
close to that of the greedy algorithm and that it is superior when nodes are
added to or removed from the multicast group during steady-state simulation.
The node overhead is lower than with the greedy algorithm since it requires only
a few query messages, so our algorithm is suitable for a distributed environment.
Moreover, it can construct an efficient multicast tree that is independent of the
multicast group size. We also showed that the competitive ratio of our algorithm
is superior to that of the greedy algorithm.

Some research problems remain concerning multicasting using this method.
One is the performance of multicasting under diverse practical traffic patterns
and network topologies. The development of a multicast routing protocol scheme
also deserves attention.

References

1. The IP Multicast Initiative, The IP Multicast Initiative Home page,
http://www.ipmulticast.com/, Dec. 1998.

2. The MBone Information Web, Home Page, http://www.mbone.com/, Dec. 1998.
3. C. Diot, W. Dabbous and J. Crowcroft, “Multipoint Communication: a Survey of

Protocols, Functions, and Mechanisms,” IEEE JSAC., Vol. 15, No. 3, pp. 277–290,
April 1997.

4. A. Ballardie, “Core Based Trees (CBT Version 2) Multicast Routing – Protocol
Specification –,” RFC2189, Sept. 1997.

846 T. Asaka, T. Miyoshi, and Y. Tanaka

5. D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson,
C. Liu, P. Sharma and L. Wei, “Protocol Independent Multicast-sparse Mode
(PIM-SM): Protocol Specification,” RFC2362, June 1998.

6. J. Moy, “Multicast Extensions to OSPF,” RFC 1584, March 1994.
7. M. Doar and I. Leslie, “How Bad is Näıve Multicast Routing?” IEEE INFO-

COM’93, pp. 82–89, March 1993.
8. B. M. Waxman, “Routing of Multipoint Connections,” IEEE JSAC., Vol. 6, No.

9, pp. 1617–1622, Dec. 1988.
9. B. M. Waxman, “Performance Evaluation of Multipoint Routing Algorithms,”

IEEE INFOCOM’93, pp. 980–986, March 1993.
10. H. Lin and S. Lai, “VTDM - a Dynamic Multicast Routing Algorithm,” IEEE

INFOCOM’98, pp. 1426-1432, March–April 1998.
11. J. Kadirire, “Minimizing Packet Copies in Multicast Routing by Exploiting Ge-

ographic Spread,” ACM SIGCOMM Computer Communication Review, Vol. 24,
pp. 47–63, 1994.

12. J. Kadirire, “Comparison of Dynamic Multicast Routing Algorithms for Wide-area
Packet Switched (Asynchronous Transfer Mode) Networks,” IEEE INFOCOM’95,
pp. 212–219, March 1995.

13. R. Venkateswaran, C. S. Raghavendra, X. Chen and V. P. Kumar, “DMRP: a
Distributed Multicast Routing Protocol for ATM Networks,” ATM Workshop’97,
May 1997.

14. K. Carlberg and J. Crowcroft, “Building Shared Trees using a One-to-many Joining
Mechanism,” ACM Computer Communication Review, Vol. 27, No. 1, pp. 5–11,
Jan. 1997.

15. M. Faloutsos, A. Banerjea, and R. Pankaj, “QoSMIC: Quality of Service Sensitive
Multicast Internet Protocol,” ACM SIGCOMM ’98, Sep. 1998.

16. L. Wei and D. Estrin, “The Trade-offs of Multicast Trees and Algorithms,”
ICCN’94, Sept. 1994.

17. F. Bauer and A. Varma, “ARIES: a Rearrangeable Inexpensive Edge-based On-line
Steiner Algorithm,” IEEE INFOCOM’96, pp. 361–368, March 1996.

18. M. Faloutsos, R. Pankaj and K. C. Sevcik, “Bounds for the On-line Multicast Prob-
lem in Directed Graphs,” 4th International Colloquium on Structural Information
and Communication Complexity, July 1997.

19. P. Winter, “Steiner Problem in Networks: a Survey,” Networks, Vol. 17, pp. 129–
167, 1987.

	Introduction
	Problem Definition
	Conventional Algorithms
	Dynamic Multicast Routing Algorithm Using Predetermined Path Search
	Simulation Model
	Simulation Results
	Competitiveness Analysis
	Conclusion

