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Abstract. In the emerging wireless ATM networks, resource allocation with
handoff consideration plays an important role in the quality of service (QoS)
guarantee for multiple traffic sources. As efficiency is an important
performance issue which is most widely used, the concept of fairness should
also be considered. In this paper we investigate a fair and efficient resource
allocation scheme for two types of traffics contending for the shared network
resource. Based on the cooperative game theory, we model the fair and efficient
allocation problem as a typical bargaining and arbitration problem, while the
issues of efficiency and fairness are considered simultaneously by using the
axiom approach. By modeling the corresponding queuing system as a Markov
chain and using the Markov decision process (MDP) analysis, we convert the
solution of optimal allocation policies into a typical linear programming
problem for which the well-known simplex type algorithms can be easily
implemented. Simulation results are also provided.

1 Introduction

Asynchronous Transport Mode (ATM) networks and wireless (cellular)
communications networks are merging to form wireless ATM networks. While this
integration can provide many benefits, it also leads to many technical challenges in
implementation. In the interconnected heterogeneous networks the quality of service
(QoS) issue needs to be resolved for different classes of traffic, as the performance
criteria differ widely from low speed, less reliable cellular systems, to high speed
ATM networks. Since wireless communication systems are bandwidth (network
resource) limited, it is important from the network management standpoint to
maximize the utility of network resources. In order to provide QoS guarantee for
multiple traffic classes in a wireless ATM network, resource allocation is one of the
central issues to be studied.

Resource allocation has been extensively studied [2]. Unfortunately, most of the
schemes are designed for ATM networks and with the assumption that the terminals
are fixed. As smaller cells are always used in wireless communication systems to
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meet the need for increased system capacity and spectrum efficiency, the number of
cell boundary crossing increases significantly and thus the need for frequent and
efficient handoff also increases. As a result, network resource allocations with
handoff consideration in wireless ATM networks need to be resolved.

As there are many types of traffics with frequently conflicting performance criteria
need to be supported on the limited network resources, multiple objective
optimization techniques are needed to get the optimal allocation scheme [11]. Game
theory provides a strong mathematical tool for this kind of problem. In early works,
attention was mostly focused on the concept of efficiency, such as network resource
utilization or throughput maximization. Based on the competitive game theory, the
Nash equilibrium solution and Pareto-optimality were used to achieve efficiency.
Although this solution can achieve global optimization, it is still shown that there are
some cases in which the performance for one or some of the users can be very bad
[10]. That is, the performance of some users may be sacrificed to achieve system
efficiency, which is unfair to those users. As the quality of service required by various
traffic types should be maintained, the concept of fairness is attracting more and more
attention. The cooperative game theory provides a strong mathematical tool for the
synthesis and analysis of the fair-efficient allocation schemes for the multi-service
network [3]. In this paper, we present an optimal resource allocation scheme with
handoff priority for wireless ATM networks based on this methodology. We consider
two types of traffic to a network node: new calls and handoff calls with higher priority
assigned to handoff traffics. By viewing the two types of calls as two players of a
cooperative game, we model the problem as a two-person arbitration problem and use
the Modified-Thomson scheme to solve optimal solution. Furthermore, by
considering the corresponding queuing network as a Markov chain and using the
Markov decision process (MDP) analysis, we convert the problem considered into a
typical linear programming problem and use the well-known simplex-type algorithm
to get the optimal allocation policies for each state. In our analysis, both the efficiency
and the fairness features are easily considered by the axiom approach.

This paper is organized as follows: Section 2 provides a brief review of the
cooperative game theory, especially the bargaining models and the arbitration
schemes. In Section 3, the network model is described and the Modified-Thomson
scheme based on the MDP analysis is presented. As an example, some numerical
results are provided in Section 4, which illustrate the advantages of our method.
Finally, the discussion and the directions for the future work are presented in Section
5.

2 Cooperative Game Theory: Bargaining and Arbitration Model

In the cooperative game, players are assumed to be free to cooperate and bargain to
obtain mutual advantage in contrast to the non-cooperative (competitive) game case,
in which context communications are not allowed [4]. As bargaining and arbitration
are most often used in this kind of problem, we first introduce these two concepts in
the following subsections.
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2.1 Bargaining Problem

Cooperative games [5] concern at least two players, who may try to reach agreement
that can give them mutual advantages. In two-person cooperative game, we can use a
region R to denote the problem set and use (u,v) to denote a point in R while u and v
represent the two players’ utility, respectively. In bargaining situations, the players
will act cooperatively to discard all jointly dominated pairs (a pair (u,v) is said to be
dominated by another pair (r,s) if both svru ≤≤ , )and all undominated pairs which
fail to give each of them at least the amount he could be sure of without cooperation.

It is well known that if the players restrict their attention to the bargaining set and
bitterly bargain over which point to select, then rational players will frequently fail to
reach an agreement [5]. For this case, we can assume that the players will be willing
to resolve their conflict through an arbiter--an impartial outsider who will sincerely
envisage his mission to be “fair” to both players. Thus, we can use the so-called
arbitration schemes to get the optimal allocation solution.

2.2 Arbitration Scheme

One of the favorite approaches to get the arbitration solution is the so-called
axiomatic approach that exams the subjective intuition of “fairness” and optimality,
and formulates these as a set of precise desiderates that any acceptable scheme must
fulfill. Once these axioms are formalized, then the original problem is reduced to a
mathematical investigation of the existence and characterization of arbitration
schemes.

Nash studied this kind of problem in 1950[5] and provided a formal definition and

solution. The bargaining problem ( )[ ]00 ,, vuR  is characterized by a region R of the

plane and a starting point ( )00 ,vu , and we can use F to denote an arbitration scheme

which maps a typical bargaining game into an arbitrated outcome. Four axioms are
defined:
Invariance (inv): The arbitrated value is independent of the unit and origin of the
utility measurement (invariance with respect to linear transform).
Independence of irrelevant alternatives (iia) If some of the possible utility

combinations were dropped from R, resulting a subset R’, then if ),( ** vu still left in

the R’, then arbitration value for the new problem will not change.
Efficiency--Pareto-optimality (po):  No one can be made better without making the
other worse off.

Symmetry: If R is symmetry about the axis u=v and ( )00 ,vu  is on the axis, then the

solution point is also on the axis.
These four axioms fully characterized the Nash solution. Besides Nash’s scheme,

some alternative solutions schemes have also been reported [5]. By introducing the
concept of preference functions, Cao[6] also formed a mathematical interpretation of
the arbitration schemes.
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Definition 1: preference function

Player i’s preference function iν for the outcomes of a bargaining problem [ ])0,0(,R

is a function of the utilities u and v and the set R, i.e., ),,( Rvufii =ν , where

( ) Rvu ∈, .

Note: under the axiom (inv), without losing any generality, we can always linearly

transform any pair ( )[ ]00,, vuR in such a way that:

)1):max(,1):(max( =∈′′=∈′′ RvvRuu & )0,0(),( 00 =′vu    (1)

Which is called normalization.
For our problem, the preference function can be defined as [3,8]:

)1(1 vu −+= γν   (2)

)1(2 uv −+= γν   (3)

whereγ is a weighting factor and γ =-1,0,1 will correspond to the Modified-
Thomson, Nash and Raiffa schemes, respectively. The optimal solution is to
maximize the product of player’s preference functions:

( ) { })maxarg(, 21
),(

** νν ⋅=
vu

vu   (4)

In the Modified-Thomson case, as γ =-1, then ν1=ν2, therefore the problem can be
reduced to the maximization of u+v, which will make the problem much simpler to
solve.

3 Network Model

In mobile communications systems, there are generally two categories of arrivals to a
link (i.e., normal and handoff arrivals). In most cases preference should be given to
handoffs over normal arrivals (handoff priority schemes), because the dropping of an
existing connection will have more impact on performance than the blocking of a new
call. The simplest scheme is fixed channel reservation (i.e., to assign Ch channels
exclusively for handoff arrivals among the total C channels in a cell) [7]. Being a
deterministic priority scheme, it is not efficient, so here we use another scheme
described below.

To begin, we focus our attention on only one cell which can carry two types of
arrivals: normal arrivals and handoff arrivals. We assume:

Normal arrivals offered to the network can be characterized by a Poisson process
with average ratenλ . The holding time can be modeled by an exponential distribution

with mean 1−
nµ . Bandwidth requirement for normal arrivals is denoted by nd .

The handoff arrival is also characterized as a Poisson process with average ratehλ ,

exponentially distributed holding time with mean 1−
hµ and bandwidth requirementhd .

We assume here that: hd > nd .

The total number of channels that available at the cell is denoted by N. At any
given instant t, let { }jxixtX hn === ,)( to denote the state of network, where nx and
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hx are the number of normal arrivals and handoff arrivals current in progress in the

cell, respectively.

  Therefore, the system state space can be denoted by
 { }NdjdijijiE hn ≤+≤≤= **0,,0:),(

and can be divided into several subspaces [7]:

ebi EEEE ++=  (5)

{ }hhni dNdjdijijiE −≤+≤≤= **0,,0:),(                (6)

{ }1**1,,0:),( −≤+≤+−≤= NdjdidNjijiE hnhb     (7)

{ }NdjdijijiE hne =+≤= **,,0:),(                   (8)

If the state is in subspace Ee, then every coming arrival will be blocked due to lack
of channel. In subspace Eb, only handoff arrival will be blocked due to no channel
available and normal will be admitted with some probability.  In subspace Ei, both
kinds of arrival can be accepted with some probability. As handoff priority is
considered, we assume that the handoff arrivals will always be admitted with
probability 1, as long as there are enough channels available and only normal arrivals
will be admitted with some probabilities α(i,j), which are the control parameters that
need to be calculated.

Based on these assumptions, we can address the problem by using the Markov
Decision Process (MDP) model [3,8]. As the state of network is represented by a
vector x and the state space E. The access policy will be equivalent to an admission
subset EA∈ , and under this policy, an arrival is accepted when the state is x if and

only if: 



=∈+

−
010, KK

thk
kk eAex . We also can assume that the

departure is never blocked. Where the system is in state x, reject/accept decision must
be made for each coming arrival. Thus, the action space becomes:

( ) { } { }{ }1,0,1,0:, ∈∈= hnhn aaaaB   (9)
The actual action space is a state-dependent subspace of B:

{ }AexifaaBaB khnx ∉+==∈= ,0,   (10)

For a MDP model, we can rewrite the state as ),,( δxxxX hnB =  with δx is a

random variable denoting the action of refusal or acceptance for connection of a
normal arrival. We can also use a new state space expression:

{ }xD BaExaxE ∈∈= ,),,( .

In order to get optimal scheme, we can use the average-reward MDP model, and a
reward function r(x,a) should be chosen. We chose the reward function so that
optimization objective is to maximize the product of the preference function of
normal arrivals and handoff arrivals. Here, we fist choose the Modified-Thomson
scheme. Then the problem can be described as a linear programming model:

Max:

∑ ++∑=
∈∈ i

h

hh

n

nn

Ex
N

d

Ex
N

d
D xpxpxpZ ))1,()0,(()1,( µ

λ
µ
λ

          (11)

Subject to:
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∑ =
∈ DEax

axp
),(

1),(   (12)

∑ ∑ ′′′′=
∈ ∈′′x DBa Eax

axpxaxqaxpxaxq
),(

),(),,(),(),,(  (13)

DEaxallforaxp ∈≥ ),(,0),(  (14)

 Where:
{ }
{ }
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
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+=′′
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=′′

otherwise

xxxx

xxxx

xxxEx

xxxEExa
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hnnn

hnih

hnbin

0
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),1(,11

),,(
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λ
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       (15)

{ } { } 221121 1,11),,( µµλλ xxExEExaxaxq ibi ++∈⋅++∈=⋅=  (16)

Also, the blocking probability constraints can be included as:
∑ ≤
E

nBxp )0,(  (17)

h
EE

Bxpxpxp
eb

≤∑+∑ + )0,())1,()0,((   (18)

Then, the two-phase simplex algorithm can be used to find the optimal solution.
After getting p(x,d), the admission probabilities can be calculated by:

α(i,j)=p(i,j,1)/(p(i,j,0)+p(i,j,1)) (19)

4 Numerical Example

We constructed a network layer model in the OPNET environment for our simulation
scenario, as shown in Figure 1. The network node consists of two traffic source
modules, a switch and a sink module. The two traffic source modules generate
Poisson type traffics that represent new calls and handoff calls, respectively. The
switch is viewed as a finite buffer queue with finite capacity. The sink node is only
used for simulation purpose, which can destroy the received packets so that there are
enough system resources (memory) for the simulation program. The detailed internal
process layer model for the admission control module is shown in Figure 2. In
analysis, we assume that the arrival rate of handoff is known a priori. But in fact, the
parameter is implicit and must be determined from the process dynamics [6].

Here, the load is defined as:
u= dn (λn/µ) + dh*(λh/µ) (20)

By increasing the arrival rate of these two sources (thus the load), we get the loss
ratio increased as shown in Figure 3 and 4. Figure 3 gives an example of the variation
of loss ratio b1 with the increasing of offered load where, for a value of offered load,
an optimal control is computed. In the figure, the curve for the case without control is
attached for comparison. Figure 4 shows the variation of loss ratio b2 against the
changing of offered load, the curve for the case without control is also attached for
comparison. In Figure 5, the improvement of system utilization against the offered
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load is illustrated by the comparison of the cases without control and with optimal
control. The following can be seen:

1)  In the case without control, the handoff traffic always has a higher loss ration
due to its higher bandwidth requirements.

2) The higher loss ratio of handoff traffic means unfair allocation.
3) In the case with optimal control, we can control the system so that both traffics

have performance improvement and thus improvement on the system utilization.
4) Under our optimal control, the two types of traffic not only get performance

improvement but also achieve similar performance, which is viewed as a fair
allocation of resource.

Fig. 1. Node model

Fig. 2. CAC Process Model
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5) We have to admit that although our scheme can achieve good performance
under light and moderate traffic load, there do exist some cases, when the load is very
high so that no feasible solution can be obtained. This is the one shortcoming of the
scheme.

5 Conclusion

A fundamental problem in connection oriented multi-service networks is finding the
optimal policy for call acceptance. In this article, we have presented a fair-efficient
channel assignment policy based on the cooperative game theory, and especially, the
arbitration scheme and axiom approach. Theoretical anaylsis and numeriacl results
indicate that:

Fig. 3. Loss ratio against load (for handoff calls)

Fig. 4. Loss ratio against load (for new calls)
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Fig. 5. Utilization improvement

An optimal resource allocation scheme is devised to maximize system utilization
while maintaining a fair allocation of resources among competing users, satisfying
their individual QoS requirements..

The arbitration scheme and axiom approach are quite appropriate and applicable to
resolve these issues

Allocation policy for each state can be calculated by solving a typical linear
programming problem while the well-known simplex type algorithms can be used.

After pre-calculation of allocation policies for each state, resource allocation
scheme can be implemented on-line very easily and performed at high speed, only a
simple table-search is needed.

While the model proposed in this paper can work well for some modest size
networks (small state and admission policy spaces), the evaluation of optimal
allocation for large-scale networks will become intractable due to the large state and
policy spaces. In such cases, some state space reduction and approximation
algorithms need to be investigated.
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