Abstract
The article presents a brief review of the past and the current state of the rough set-related research and provides some ideas about the perspectives of rough set methodology in the context of its likely impact on the future computing devices. The opinions presented are solely of the author and do not necessarily reflect the point of view of the majority of the rough set community.
Preview
Unable to display preview. Download preview PDF.
References
Pawlak, Z. Grzymata-Busse, J. Slowiriski, R. and Ziarko, W. (1995). Rough sets. Communications of the ACM, 38, 88–95.
Pawlak, Z. (1991). Rough Sets-Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston, London, Dordrecht.
Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, 11, 341–356.
Son, N. (1997). Rule induction from continuous data, in: P.P. Wang (ed.), Joint Conference of Information Sciences, March 1-5, Duke University, Vol. 3, 81–84.
Slowinski, R. (ed.) (1992). Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, Kluwer Academic Publishers, Boston, London, Dordrecht.
Ziarko, W. (ed.) (1994) Rough Sets, Fuzzy Sets and Knowledge Discovery, Springer Verlag, 326–334.
Yang, A., and Grzymala-Busse J. (1997). Modified algorithms LEM1 and LEM2 for rule induction form data with missing attribute values., In: P.P. Wang (ed.), Joint Conference of Information Sciences, March 1-5, Duke University, Vol. 3, 69–72.
Ziarko, W. (1993). Variable precision rough sets model.Journal of Computer and Systems Sciences, vol. 46, no. 1, 39–59.
Ziarko, W. Katzberg, J.(1993). Rough sets approach to system modelling and control algorithm acquisition. Proceedings of IEEE WASCANEX 93 Conference, Saskatoon, 154–163.
Ziarko, W. (1999) Decision making with probabilistic decision tables.Proceedings of the 7th Intl Workshop on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, RSFDGrC'99, Yamaguchi, Japan 1999, Lecture Notes in AI 1711, Springer Verlag, 463–471.
Pawlak, Z. (2000) Rough sets and decision algorithms.Proceedings of the 2nd Intl Conference on Rough Sets and Current Trends in Computing, RSCTC'2000, Banff, Canada, 1–16.
S. K. Pal and A. Skowron (eds.) (1999) Rough Fuzzy Hybridization: A New Trend in Decision-Making, Springer-Verlag, Singapore.
L. Polkowski and A. Skowron (eds.) (1998) Rough Sets in Knowledge Discovery 1. Methodology and Applications, this Series vol. 18, Physica-Verlag, Heidelberg.
L. Polkowski and A. Skowron (eds.) (1998) Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, this Series, vol. 19, Physica-Verlag, Heidelberg.
T. Y. Lin and N. Cercone (eds.)(1997) Rough Sets and Data Mining. Analysis of Imprecise Data, Kluwer Academic Publishers, Dordrecht.
N. Zhong, A. Skowron, and S. Ohsuga (eds.)(1999) New Directions in Rough Sets, Data Mining, and Granular-Soft Computing, Proceedings: the 7th International Workshop (RSFDGrC'99), Ube-Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin.
M. Banerjee and S. K. Pal (1996) Roughness of a fuzzy set, Information Science 93(3/4)pp. 235–246.
S. Demri, E. Orlowska, and D. Vakarelov (1999) Indiscernibility and complementarity relations in Pawlak’s information systems, in: Liber Amicorum for Johan van Benthem’s 50th Birthday.
A. Czyzewski (1997) Learning algorithms for audio signal enhancement. Part 2: Implementation of the rough set method for the removal of hiss, J. Audio Eng. Soc. 45(11), pp. 931–943.
S. Greco, B. Matarazzo, and R. Slowinski (1999) Rough approximation of a preference relation by dominance relations, European Journal of Operational Research 117, 1999, pp. 63–83.
J. W. Grzymala-Busse and J. Stefanowski (1997) Discretization of numerical attributes by direct use of the rule induction algorithm LEM2 with interval extension, in: Proceedings: the Sixth Symposium on Intelligent Information Systems (IIS'97), Zakopane, Poland, pp. 149–158.
K. Krawiec, R. Slowiriski, and D. Vanderpooten (1998) Learning of decision rules from similarity based rough approximations, in: L. Polkowski, A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica-Verlag, Heidelberg, pp. 37–54.
T. Y. Lin, Ning Zhong, J. J. Dong, and S. Ohsuga (1998) An incremental, probabilistic rough set approach to rule discovery, in: Proceedings: the FUZZ-IEEE International Conference, 1998 IEEE World Congress on Computational Intelligence (WCCI'98), Anchorage, Alaska.
E. Martienne and M. Quafafou (1998) Learning fuzzy relational descriptions using the logical framework and rough set theory, in: Proceedings: the 7th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'98), IEEE Neural Networks Council.
Nguyen Hung Son and Nguyen Sinh Hoa (1997) Discretization methods with backtracking, in: Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT'97), Aachen, Germany, Verlag Mainz, Aachen, pp. 201–205.
W. Pedrycz (1999), Shadowed sets: bridging fuzzy and rough sets, in: S. K. Pal and A. Skowron (eds.), Rough Fuzzy Hybridization: A New Trend in Decision-Making, Springer-Verlag, Singapore, pp. 179–199.
J. E. Peters, A. Skowron, and Z. Suraj (1999) An application of rough set methods in control design, in: Proceedings: the Workshop on Concurrency, Specification and Programming (CS&P'99), Warsaw, Poland, pp.214–235.
Munakata, T. (1997) Rough control: a perspective, In: T. Y. Lin and N. Cercone (eds.), Rough Sets and Data Mining. Analysis for Imprecise Data. Kluwer Academic Publishers, Dordrecht,pp. 77–88.
Slowinski, K. (1992) Rough classification of HSV patients. In: R. Slowiriski (ed.), Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, Kluwer Academic Publishers, Dordrecht,pp. 77–93.
Slowinski, K., Sharif, E. S. (1993) Rough sets approach to analysis of data of diat-nostic peritoneal lavage applied for multiple injuries patients. In: W. Ziarko (ed.), Rough Sets, Fuzzy Sets and Knowledge Discovery. Proceedings of the International Workshop on Rough Sets and Knowledge Discovery (RSKD'93), Banff, Alberta, Canada, October 12-15, Springer-Verlag, pp. 420–425.
Szladow, A., and Ziarko W. (1993) Adaptive process control using rough sets. Proceedings of the International Conference of Instrument Society of America, ISA/93, Chicago, pp. 1421–1430.
Tsumoto, S. Ziarko, W. Shan. N. Tanaka, H.(1995) Knowledge discovery in clinical databases based on variable precision rough sets model. Proc. of the Nineteenth Annual Symposium on Computer Applications in Medical Care, New Orleans, 1995, Journal of American Medical Informatics Association Supplement,pp. 270–274.
Wasilewska, A., Banerjee, M. (1995) Rough sets and topological quasi-Boolean algebras. Proceedings of CSC'95 Workshop on Rough Sets and Database Mining, Nashville, pp.54–59.
Wong, S. K. M., Wang, L. S., Yao, Y. Y.(1995) On modeling uncertainty with interval structures. Computational Intelligence: an International Journal 11/2, pp. 406–426.
Vakarelov, D. (1991) A modal logic for similarity relations in Pawlak knowledge representation systems. Fundamenta Informaticae 15, pp. 61–79.
Mrozek, A.(1992) Rough sets in computer implementation of rule-based control of industrial processes. In: R. Slowiriski (ed.), Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory. Kluwer Academic Publishers, Dordrecht, pp. 19–31.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ziarko, W. (2001). Rough Sets: Trends, Challenges, and Prospects. In: Ziarko, W., Yao, Y. (eds) Rough Sets and Current Trends in Computing. RSCTC 2000. Lecture Notes in Computer Science(), vol 2005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45554-X_1
Download citation
DOI: https://doi.org/10.1007/3-540-45554-X_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43074-2
Online ISBN: 978-3-540-45554-7
eBook Packages: Springer Book Archive