Abstract
We investigate a Rough Set approach to treating imperfect data in Inductive Logic Programming. Due to the generality of the language, we base our approach on neighborhood systems. A first-order decision system is introduced and a greedy algorithm for finding a set of rules (or clauses) is given. Furthermore, we describe two problems for which it can be used.
Preview
Unable to display preview. Download preview PDF.
References
T.G. Dietterich, R.H. Lathrop, and T. Lozano-Pérez. Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2):31–71, 1997.
J. Komorowski, Z. Pawlak, L. Polkowski, and A. Skowron. A rough set perspective on data and knowledge. In Pal and Skowron (Eds), Rough Fuzzy Hybridization, pp. 107–121. Springer-Verlag, 1999.
N. Lavrač and S. Džeroski. INDUCTIVE LOGIC PROGRAMMING: Techniques and Applications. Ellis Horwood, 1994.
T.Y. Lin. Granular computing on binary relations I: Data mining and neighborhood systems. In Polkowski and Skowron 10 pp. 107–121.
T.Y. Lin. Granular computing on binary relations II: Rough set representations and belief functions. In Polkowski and Skowron 10 pp. 122–140.
C. Liu and N. Zhong. Rough problems settings for inductive logic programming. In Zhong et al. 15 pp. 168–177.
H. Midelfart and J. Komorowski. Rough inductive logic programming. Technical report, Dept. of Comp. and Info. Science, Norwegian Univ. of Sci. and Tech., 2000.
S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13(3/4): 245–286, 1995.
S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic Programming, 19, 20:629–679, 1994.
L. Polkowski and A. Skowron (Eds). Rough Sets in Knowledge Discovery 1: Methodology and Applications, Physica-Verlag, 1998.
C. Rouveirol. Flattening and saturation: Two representation changes for generalization. Machine Learning, 14:219–232, 1994.
A. Siromoney and K. Inoue. The generic rough set inductive logic programming model and motifs in strings. In Zhong et al. 15 pp. 158–167.
A. Skowron and C. Rauszer. The discernibility matrices and functions in information systems. In Intelligent decision support: Handbook of Applications and Advances of Rough Sets Theory, pp. 331–362, 1992.
J. Stepaniuk. Rough sets and relational learning. In H. J. Zimmermann, editor, Proceedings of EUFIT'99, 1999.
N. Zhong, A. Skowron, and S. Ohsuga, editors. Proceedings of RSFDGrC'99, LNAI 1711. Springer-Verlag, 1999.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Midelfart, H., Komorowski, J. (2001). A Rough Set Approach to Inductive Logic Programming. In: Ziarko, W., Yao, Y. (eds) Rough Sets and Current Trends in Computing. RSCTC 2000. Lecture Notes in Computer Science(), vol 2005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45554-X_22
Download citation
DOI: https://doi.org/10.1007/3-540-45554-X_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43074-2
Online ISBN: 978-3-540-45554-7
eBook Packages: Springer Book Archive