Abstract
In this paper, we present agents based tool to discover new research topics from the information available on the World Wide Web (WWW). Agents are using KAROKA (Keywords Association Rides Optimizer Knobots Advisers). KAROKA is a model of discovery in text database used in WWW. The WWW sources are converted to a highly structured collection of text. Then, KAROKA tries to extract association rules, regularities and useful information in the collection of text. KAROKA techniques are described such as information retrieval similarity metrics for text, generation and pruning of keywords combination, and summary proposal of discovered information.
Preview
Unable to display preview. Download preview PDF.
References
Crimmins, F. et al.: “TetraFusion: Information Discovery on the Internet” IEEE Intelligent Systems Journal, pp.55–62, July–August, 1999.
Pazzani, M.: “Trends and Controversies: Knowledge discovery from data ?” IEEE Intelligent Systems Journal, pp. 10–13, March–April, 2000.
Mladenic, D. and Stefan, J.: “Text-learning and Related Intelligent Agents: A Survey” IEEE Intelligent Systems Journal, pp.44–54, July–August, 1999.
Levy, A.Y. and Weld, D.S.: “Intelligent Internet systems” Artificial Intelligence Journal, vol. 118, numbers 1–2, pp.1–14, April, 2000.
Cohen, W.W. and Fan W.: “Web-Collaborativc Filtering: Recommending Music by Crawling The Web” in The 9th International WWW Conference, May, 2000.
Good, N. et al.: “Combining collaborative filtering with personal agents for better recommendations” in the Proceedings of AAAI-99, pp.439–446, 1999.
Hearst, M.: “Untangling Text Data Mining,” in the Proceedings of ACL’99, June, 1999.
Salton, G.: “Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer;”, Addison-Wesley, 1989.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ramamonjisoa, D., Suzuki, E., Hamid, I. (2001). Research Topics Discovery from WWW by Keywords Association Rules. In: Ziarko, W., Yao, Y. (eds) Rough Sets and Current Trends in Computing. RSCTC 2000. Lecture Notes in Computer Science(), vol 2005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45554-X_51
Download citation
DOI: https://doi.org/10.1007/3-540-45554-X_51
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43074-2
Online ISBN: 978-3-540-45554-7
eBook Packages: Springer Book Archive