Abstract
We propose a new boosting algorithm which similarly to v-Support-Vector Classification allows for the possibility of a pre-specified fraction v of points to lie in the margin area or even on the wrong side of the decision boundary. It gives a nicely interpretable way of controlling the trade-off between minimizing training error and capacity. Furthermore, it can act as a filter for finding and selecting informative patterns from a database.
This paper is a short version of [8].
Preview
Unable to display preview. Download preview PDF.
References
L. Breiman. Prediction games and arcing algorithms. Technical Report 504, Statistics Department, University of California, December 1997.
H. Drucker, R. Schapire, and P. Simard. Boosting performance in neural networks. Int. Journal of Pattern Recognition and Artificial Intelligence, 7:705–719, 1993.
Y. LeCun et al. Learning algorithms for classification: A comparison on handwritten digit recognition. Neural Networks, pages 261–276, 1995.
A. Grove and D. Schuurmans. Boosting in the limit: Maximizing the margin of learned ensembles. In Proc. of the 15th Nat. Conf. on AI, pages 692–699, 1998.
C. J. Merz and P. M. Murphy. UCI repository of machine learning databases, 1998. [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA.
J. R. Quinlan. Boosting first-order learning (invited lecture). Lecture Notes in Computer Science, 1160:143, 1996.
G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Technical Report NC-TR-1998-021, NeuroColt, 1998. To appear in Machine Learning.
G. Rätsch, B. Schökopf, A. Smola, S. Mika, T. Onoda, and K.-R. Müller. Robust ensemble learning. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 207–219. MIT Press, Cambridge, MA, 1999.
R. Schapire, Y. Freund, P. L. Bartlett, and W. Sun Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5):1651–1686, 1998.
B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms. Neural Computation, 12:1083–1121, 2000.
H. Schwenk and Y. Bengio. Training methods for adaptive boosting of neural networks. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural Inf. Processing Systems, volume 10. The MIT Press, 1998.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rätsch, G., Schölkopf, B., Smola, A.J., Mika, S., Onoda, T., Müller, KR. (2000). Robust Ensemble Learning for Data Mining. In: Terano, T., Liu, H., Chen, A.L.P. (eds) Knowledge Discovery and Data Mining. Current Issues and New Applications. PAKDD 2000. Lecture Notes in Computer Science(), vol 1805. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45571-X_39
Download citation
DOI: https://doi.org/10.1007/3-540-45571-X_39
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67382-8
Online ISBN: 978-3-540-45571-4
eBook Packages: Springer Book Archive