Skip to main content

Towards Model-Based Estimation of the Cardiac Electro-Mechanical Activity from ECG Signals and Ultrasound Images

  • Conference paper
  • First Online:
Book cover Functional Imaging and Modeling of the Heart (FIMH 2001)

Abstract

We present a 3D numerical representation of the heart which couples the electrical and biomechanical models. To achieve this, the FitzHugh-Nagumo equations are solved along with a constitutive law based on the Hill-Maxwell rheological law. Ultimately, the parameters of this generic model will be adjusted by comparing the actual patient’s ECG with computational results and the deformation of the biomechanical model with the geometric information extracted from the ultrasound images of the patient’s heart.

Corresponding Author: Maxime.Sermesant@inria.fr

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.L. Bardou, P.M. Auger, P.J. Birkui, and J.L. Chass. Modeling of cardiac electrophysiological mechanisms: From action potential genesis to its propagation in myocardium. Critical Reviews in Biomedical Engineering, 24:141–221, 1996.

    Google Scholar 

  2. O. Berenfeld and J. Jalife. Purkinje-muscle rentry as a mechanism of polymorphic ventricular arrhytmias in a 3-dimensional model of the ventricles. Circ. Res., 82:1063–1077, 1998.

    Google Scholar 

  3. J. Bestel, F. Clément, and M. Sorine. A biomechanical model of muscle contraction. InMedical Image Computing and Computer-Assisted intervention (MICCAI’01), 2001.

    Google Scholar 

  4. J. Bestel and M. Sorine. A differential model of muscle contraction and applications. In Schloessman Seminar on Mathematical Models in Biology, Chenistry and Physics, 2000.

    Google Scholar 

  5. D. Durrer, R.T. van Dam, G.E Freud, M.J. Janse, F.L. Miejler, and R.C. Arzbaecher. Total excitation of the isolated human heart. Circulation, 41:899–912, 1970.

    Google Scholar 

  6. A.V. Hill. The heat of shortening and the dynamic constants in muscle. Proc. Roy. Soc. London, 126:136–165, 1938.

    Google Scholar 

  7. A.V. Holden and A.V. Panfilov. Computational biology of the heart, chapter Modelling propagation in excitable media, pages 65–99. John Wiley & Sons, 1996.

    Google Scholar 

  8. Z. Knudsen, A.V. Holden, and J. Brindley. Qualitative modelling of mechano electrical feedback in a ventricular cell. Bulletin of mathematical biology, 6(59):115–181, 1997.

    Google Scholar 

  9. M. Nash. Mechanics and Material Properties of the Heart using an Anatomically Accurate Mathematical Model. PhD thesis, University ofAuckland, 1998.

    Google Scholar 

  10. A.V. Panfilov and A.V. Holden. Computer-simulation of reentry sources in myocardiumin 2 and 3 dimensions. Journal of Theoretical Biology, 3(161):271–285, 1993.

    Article  Google Scholar 

  11. X. Papademetris, A.J. Sinusas, D.P. Dione, and J.S. Duncan. Estimation of 3D left ventricle deformation from echocardiography. Medical Image Analysis, 5(1):17–28, 2001.

    Article  Google Scholar 

  12. Q.C. Pham, F. Vincent, P. Clarysse, P. Croisille, and I. Magnin. A FEM-based deformable model for the 3D segmentation and tracking of the heart in cardiac mri. In Image and Signal Processing and Analysis (ISPA’01), 2001.

    Google Scholar 

  13. A.E. Pollard, N. Hooke, and C.S. Henriquez. Cardiac propagation simulation. Critical Reviews in biomedical Engineering, 20(3,4):171–210, 1992.

    Google Scholar 

  14. J. Rogers, M. Courtemanche, and A. McCulloch. Computational biology of the heart, chapter Finite element methods for modelling impulse propagation in the heart, pages 217–233. John Wiley & Sons, 1996.

    Google Scholar 

  15. M. Sermesant, Y. Coudière, H. Delingette, N. Ayache, and J.A. Désidéri. An electro-mechanical model of the heart for cardiac image segmentation. In Medical Image Computing and Computer-Assisted intervention (MICCAI’01), 2001.

    Google Scholar 

  16. J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag (Grundlehren der mathematischen Wissenschaften 258), 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ayache, N. et al. (2001). Towards Model-Based Estimation of the Cardiac Electro-Mechanical Activity from ECG Signals and Ultrasound Images. In: Katila, T., Nenonen, J., Magnin, I.E., Clarysse, P., Montagnat, J. (eds) Functional Imaging and Modeling of the Heart. FIMH 2001. Lecture Notes in Computer Science, vol 2230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45572-8_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-45572-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42861-9

  • Online ISBN: 978-3-540-45572-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics