Abstract
In this study, the feasibility of two-dimensional strain rate estimation of the human heart in vivo is shown. To do this, ultrasonic B-mode data were captured at a high temporal resolution of 3.7 ms and processed off-line. The motion of the radio-frequency signal patterns within the two-dimensional sector image was tracked and used as the basis for strain rate estimation. Both axial and lateral motion and strain rate estimates showed a good agreement with the results obtained by more established, one-dimensional techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Heimdal, A. Stoylen, H. Torp, and T. Skjaerpe. Real-time strain rate imaging of the left ventricle by ultrasound. Journal of the American Society of Echocardiography, 11(11):1013–1019, 1998.
J. D'hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G.R. Sutherland. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. European Journal of Echocardiography, 1(3):154–170, 2000.
A. Heimdal, J. D'hooge, B. Bijnens, G.R. Sutherland, and H. Torp. In vitro validation of in-plane strain rate imaging. a new ultrasound technique for evaluating regional myocardial deformation based on tissue doppler imaging. (abstract). Echocardiography, 18(8):S40, 1998.
S. Urheim, T. Edvardsen, H. Torp, B. Angelsen, and O. Smiseth. Myocardial strain by doppler echocardiography. validation of a new method to quantify regional myocardial function. Circulation, 102:1158–1164, 2000.
P.L. Castro, N.L. Greenberg, J. Drinko, M.J. Garcia, and J.D. Thomas. Potential pitfalls of strain rate imaging: angle dependency. Biomedical sciences instrumentation, 36:197–202, 2000.
I.A. Hein and W.D. O'Brien. Current time domain methods for assessing tissue motion by analysis from reflected ultrasound echoes-a review. IEEE Transactions on Ultrasonics, Ferro-electrics and Frequency Control, 40(2):84–102, 1993.
L. Gao, K.J. Parker, R.M. Lerner, and S.F. Levinson. Imaging of the elastic properties of tissue-a review. Ultrasound in Medicine & Biology, 22(8):959–977, 1996.
E.E. Konofagou and J. Ophir. A new method for estimation and imaging of lateral strains and poisson’s ratios in tissues. Ultrasound in Medicine & Biology, 24:1183–1199, 1998.
J.G. Proakis and D.G. Manolakis. Digital signal processing: principles, algorithms and applications. Prentice-Hall International, 1996.
L.N. Bohs and G.E. Trahey. A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. IEEE Transactions on Biomedical Engineering, 38:280–286, 1991.
T. Varghese, J. Ophir, and I. Cespedes. Noise reduction in elastography using temporal stretching with multicompression averaging. Ultrasound in Medicine & Biology, 22:1042–1053, 1996.
J.U. Voigt, M.F. Arnold, M. Karlsson, L. Hubbert, T. Kukulski, L. Hatle, and G.R. Sutherland. Assessment of regional longitudinal myocardial strain rate derived from doppler myocardial imaging indexes in normal and infarcted myocardium. The Journal of the American Society of Echocardiography, 13(6):588–598, 2000.
M. Kowalski, T. Kukulski, F. Jamal, J. D'hooge, F. Weidemann, F. Rademakers, B. Bijnens, L. Hatle, and G.R. Sutherland. Can natural strain and strain rate quantify regional myocardial deformation? a study in healthy subjects. Ultrasound in Medicine & Biology, 27(8):1087–1097, 2001.
F.E. Rademakers, M.B. Buchalter, W.J. Rogers, E.A. Zerhouni, J.L. Weisfeldt, M.L. Weiss, and B. Shapiro. Dissociation between left ventricular untwisting and filling. accentuation by catecholamines. Circulation, 85(4):1572–1581, 1992.
J.A. Vierendeels, K. Riemslagh, E. Dick, and P.R. Verdonck. Computer simulation of intraventricular flow and pressure gradients during diastole. Journal of Biomechanical Engineering, 122(6):667–674, 2000.
J.U. Voigt, G. Lindenmeier, D. Werner, F.A. Flachskampf, U. Nixdor., L. Hatle, G.R. Sutherland, and W.G. Daniel. Strain rate imaging for the assessment of preload dependent changes in regional left ventricular diastolic longitudinal function. Journal of the American Society of Echocardiography, page (In Press), 2001.
C.P. Appleton and L. Hatle. The natural history of left ventricular filling abnormalities: assessment by two-dimensional and doppler echocardiography. Echocardiography, 9:437–457, 1992.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
D'hooge, J. et al. (2001). Two-Dimensional Ultrasonic Strain Rate Measurement of the Human Heart in Vivo. In: Katila, T., Nenonen, J., Magnin, I.E., Clarysse, P., Montagnat, J. (eds) Functional Imaging and Modeling of the Heart. FIMH 2001. Lecture Notes in Computer Science, vol 2230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45572-8_7
Download citation
DOI: https://doi.org/10.1007/3-540-45572-8_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42861-9
Online ISBN: 978-3-540-45572-1
eBook Packages: Springer Book Archive