Abstract
This paper looks at the problem of approximating the length of the unknown parametric curve γ : [0, 1] → ℝn from points qi = γ(ti), where the parameters ti are not given. When the ti are uniformly distributed Lagrange interpolation by piecewise polynomials provides efficient length estimates, but in other cases this method can behave very badly [15]. In the present paper we apply this simple algorithm when the ti are sampled in what we call an ε-uniform fashion, where 0 ≤ ε ≤ 1. Convergence of length estimates using Lagrange interpolants is not as rapid as for uniform sampling, but better than for some of the examples of [15]. As a side-issue we also consider the task of approximating γ up to parameterization, and numerical experiments are carried out to investigate sharpness of our theoretical results. The results may be of interest in computer vision, computer graphics, approximation and complexity theory, digital and computational geometry, and digital image analysis.
This research was performed at the University of Western Australia, while the third author was visiting under the UWA Gledden Visiting Fellowship scheme.1,2 Additional support was received under an Australian Research Council Small Grant1 and under an Alexander von Humboldt Research Fellowship.1b
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asano T., Kawamura Y., Klette R., Obokkata K. (2000) A new approximation scheme for digital objects and curve length estimation. In: Cree M. J., Steyn-Ross A. (Eds) Proceedings of Image and Vision Computing Conference, Hamilton, New Zealand. November 27–November 29, 2000. Department of Physics and Electronic Engineering, University of Waikato Press, 26–31
Barsky B. A., DeRose T. D. (1989) Geometric continuity of parametric curves: three equivalent characterizations. IEEE. Comp. Graph. Appl. 9, (6):60–68
Boehm W., Farin G., Kahmann J. (1984) A survey of curve and surface methods in CAGD. Comput. Aid. Geom. Des. 1, 1–60
Bülow T., Klette R. (2000) Rubber band algorithm for estimating the length of digitized space-curves. In: Sneliu A., Villanva V. V., Vanrell M., Alquézar R., Crowley J., Shirai Y. (Eds) Proceedings of 15th International Conference on Pattern Recognition, Barcelona, Spain. September 3–September 8, 2000. IEEE, Vol. III, 551–555
Dabrowska D., Kowalski M. A. (1998) Approximating band-and energy-limited signals in the presence of noise. J. Complexity 14, 557–570
Dorst L., Smeulders A. W. M. (1991) Discrete straight line segments: parameters, primitives and properties. In: Melter R., Bhattacharya P., Rosenfeld A. (Eds) Ser. Contemp. Maths, Vol. 119. Amer. Math. Soc., 45–62
Epstein M. P. (1976) On the influence of parametrization in parametric interpolation. SIAM. J. Numer. Anal. 13, (2):261–268
Hoschek J. (1988) Intrinsic parametrization for approximation. Comput. Aid. Geom. Des. 5, 27–31
Klette R. (1998) Approximation and representation of 3D objects. In: Klette R., Rosenfeld A., Sloboda F. (Eds) Advances in Digital and Computational Geometry. Springer, Singapore, 161–194
Klette R., Bülow T. (2000) Critical edges in simple cube-curves. In: Borgefors G., Nyström I., Sanniti di Baja G. (Eds) Proceedings of 9th Discrete Geometry for Computer Imagery Conference, Uppsala, Sweden, December 13–December 15, 2000. Springer LNCS Vol. 1953, 467–478
Klette R., Kovalevsky V., Yip B. (1999) On the length estimation of digital curves. In: Latecki L. J., Melter R. A., Mount D. M., Wu A. Y. (Eds) Proceedings of SPIE Conference, Vision Geometry VIII, Denver, USA, July 19–July 20, 1999. The International Society for Optical Engineering, 3811:52–63
Klette R., Yip. B. (2000) The length of digital curves. Machine Graphics and Vision 9, 673–703
Milnor J. (1963) Morse Theory. Annals of Math. Studies 51, Princeton University Press
Moran P. A. P. (1966) Measuring the length of a curve. Biometrika 53, (3–4):359–364
Noakes L., Kozera, R. More-or-less-uniform sampling and lengths of curves. Quart. Appl. Maths. In press
Noakes L., Kozera R., Klette R. (2001) Length estimation for curves with ε-uniform sampling. In: Skarbek W. (Ed.) Proceedings of 9th International Conference on Computer Analysis of Images and Patterns, Warsaw, Poland, September 5–September 7, 2001. Springer LNCS Vol. 2124. In press
Piegl L., Tiller W. (1997) The NURBS Book. Springer, Berlin
Plaskota L. (1996) Noisy Information and Computational Complexity. Cambridge Uni. Press, Cambridge
Sederberg T. W., Zhao J., Zundel A. K. (1989) Approximate parametrization of algebraic curves. In: Strasser W., Seidel H. P. (Eds) Theory and Practice in Geometric Modelling. Springer, Berlin, 33–54
Sloboda F., Zaťko B., Stör J. (1998) On approximation of planar one-dimensional continua. In: Klette R., Rosenfeld A., Sloboda F. (Eds) Advances in Digital and Computational Geometry. Springer, Singapore, 113–160
Steinhaus H. (1930) Praxis der Rektifikation und zum Längenbegriff (In German). Akad. Wiss. Leipzig, Berlin 82, 120–130
Traub J. F., Werschulz A. G. (1998) Complexity and Information. Cambridge Uni. Press, Cambridge
Werschulz A. G., Woźniakowski H. What is the complexity of surface integration? J. Complexity. In press
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Noakes, L., Kozera, R., Klette, R. (2001). Length Estimation for Curves with Different Samplings. In: Bertrand, G., Imiya, A., Klette, R. (eds) Digital and Image Geometry. Lecture Notes in Computer Science, vol 2243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45576-0_20
Download citation
DOI: https://doi.org/10.1007/3-540-45576-0_20
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43079-7
Online ISBN: 978-3-540-45576-9
eBook Packages: Springer Book Archive