Skip to main content

Computer Presentation of 3-Manifolds

  • Chapter
  • First Online:
Digital and Image Geometry

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2243))

  • 687 Accesses

Abstract

Our goal is to describe an economic way of presenting 3-manifolds numerically. The idea consists in replacing 3-manifolds by cell complexes (their special spines) and encoding the spines by strings of integers. The encoding is natural, i.e., it allows one to operate with manifolds without decoding. We describe an application of the encoding to computer enumeration of 3-manifolds and give the resulting table. A brief introduction into the theory of quantum invariants of 3-manifolds is also given. The invariants were used by the enumeration for auto-matic casting out of duplicates. Separately, we investigate 3-dimensional submanifolds of R 3. Any such submanifold can be presented by a 3-di-mensional binary picture. We give a criterion for a 3-dimensional binary picture to determine a 3-manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Casler, B. G.: An embedding theorem for connected 3-manifolds with boundary. Proc. Amer. Math. Soc.16(1965), 559–566.

    Google Scholar 

  2. Fomenko, A. T., Matveev, S. V.: Isoenergetic surfaces of integrable Hamiltonian systems, enumeration of 3-manifolds in order of increasing complexity and volume computation of closed hyperbolic 3-manifolds. Usp. Math. Nauk 43(1988), 5–22 (Russian; English transl. in Russ. Math. Surv. 43 (1988), 3–24.

    MathSciNet  Google Scholar 

  3. Kirillov, A. N., Reshetikhin, N. Yu: Representations of the algebra U q (sl 2), q-orthogonal polynomials, and invariants for links. Infinite dimensional Lie algebras and groups. Adv. Ser. in Math. Phys. (V. G. Kac, ed.) 7(1988), 285–339.

    Google Scholar 

  4. Klette, R.: Cell complexes through time. Proc. Vision Geometry IX, San Diego, SPIE-4117(2000), 134–145.

    Google Scholar 

  5. Kovalevsky, V. A.: Finite topology as applied to image analysis. Computer Vision, Graphics, and Image Processing 46(1989), 141–161.

    Article  Google Scholar 

  6. Martelly, B., Petronio, C.: 3-Manifolds having Complexity at Most 9. Geometry and Topology, 2001 (to appear).

    Google Scholar 

  7. Matveev, S. V.: Transformations of special spines and the Zeeman conjecture. Izv. AN SSSR 51(1987), N 5, 1104–1115 (Russian; English transl. in Math. USSR Izv. 31(1988), N 2, 423–434).

    MATH  Google Scholar 

  8. Matveev, S. V.: Complexity theory of 3-manifolds. Acta Appl. Math. 19(1990), N 2, 101–130.

    MATH  MathSciNet  Google Scholar 

  9. Matveev, S. V.: Computer Recognition of Three Manifolds. Experimental Mathe-matics. 7(1998), N 2, 153–161.

    MATH  Google Scholar 

  10. Milnor, J.: Groups which act on S n without fixed points. Amer. J., Math., 79 (1967), 623–630.

    Article  MathSciNet  Google Scholar 

  11. Piergallini, R.: Standard moves for standard polyhedra and spines, III Convegno Nazionale di Topologia Trieste, 9–12 Giugno 1986(1988), 391–414.

    MathSciNet  Google Scholar 

  12. Seifert, Y.:Topologie dreidimensionalen gefaserter Räume, Acta Math. 60(1933), 147–238.

    Google Scholar 

  13. Turaev, V. G., Viro, O. Y.: State sum invariants of 3-manifolds and quantum 6j-symbol. Topology 31(1992), N 4, 865–902.

    MATH  MathSciNet  Google Scholar 

  14. Waldhausen, F.: Eine Klasse von 3-dimensionalen Mannigfaltigkeiten I, II, Invent. Math., 3(1967), 308–333; Invent. Math., 4(1967), 87–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matveev, S. (2001). Computer Presentation of 3-Manifolds. In: Bertrand, G., Imiya, A., Klette, R. (eds) Digital and Image Geometry. Lecture Notes in Computer Science, vol 2243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45576-0_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45576-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43079-7

  • Online ISBN: 978-3-540-45576-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics