Skip to main content

Representing Vertex-Based Simplicial Multi-complexes

  • Chapter
  • First Online:
Digital and Image Geometry

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2243))

Abstract

In this paper, we consider the problem of representing a multiresolution geometric model, called a Simplicial Multi-Complex (SMC), in a compact way. We present encoding schemes for both two-an d threedimensional SMCs built through a vertex insertion (removal) simplification strategy.We show that a good compression ratio is achieved not only with respect to a general-purpose data structure for a SMC, but also with respect to just encoding the complex at the maximum resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno. Simpli.cation of tetrahedral volume with accurate error evaluation. In Proceedings IEEE Visualization’00, pages 85–92. IEEE Press, 2000.

    Google Scholar 

  2. P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno. Multiresolution modeling and rendering of volume data based on simplicial complexes. In Proceedings 1994 Symposium on Volume Visualization, pages 19–26. ACM Press, October 17–18 1994.

    Google Scholar 

  3. P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. TAn2-visualization of large irregular volume datasets. Technical ReportDISI-TR-00-07, Department of Computer and Information Science, University of Genova (Italy), 2000. (submitted for publication).

    Google Scholar 

  4. L. De Floriani, P. Magillo, and E. Puppo. Efficient implementation of multitriangulations. In Proceedings IEEE Visualization 98, pages 43–50, Research Triangle Park, NC (USA), October 1998.

    Google Scholar 

  5. L. De Floriani, P. Magillo, and E. Puppo. Multiresolution representation of shapes based on cell complexes. In L. Perroton G. Bertrand, M. Couprie, editor, Discrete Geometry for Computer Imagery, Lecture Notes in Computer Science, volume 1568, pages 3–18. Springer Verlag, New York, 1999.

    Chapter  Google Scholar 

  6. M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineed-Weinstein. ROAMing terrain: Real-time optimally adapting meshes. In Proceedings IEEE Visualization’97, pages 81–88, 1997.

    Google Scholar 

  7. W. Evans, D. Kirkpatrick, and G. Townsend. Right triangular irregular networks. Technical Report97-09, University of Arizona, May 1997. Algorithmica, 2001, to appear.

    Google Scholar 

  8. J. El-Sana and A. Varshney. Generalized view-dependent simplification. Computer Graphics Forum, 18(3):C83–C94, 1999.

    Article  Google Scholar 

  9. M. Garland. Multiresolution modeling: Survey & future opportunities. In Eurographics’ 99-State of the Art Reports, pages 111–131, 1999.

    Google Scholar 

  10. R. Grosso and G. Greiner. Hierarchical meshes for volume data. In Proceedings of the Conference on Computer Graphics International 1998 (CGI-98), pages 761–771, Los Alamitos, California, June 22–26 1998. IEEE Computer Society.

    Google Scholar 

  11. S. Gumhold, S. Guthe, and W. Straßer. Tetrahedral mesh compression with the cut-border machine. In Proceedings IEEE Visualization’99, pages 51–58. IEEE, 1999.

    Google Scholar 

  12. M. H. Gross and O. G. Staadt. Progressive tetrahedralizations. In Proceedings IEEE Visualization’98, pages 397–402, Research Triangle Park, NC, 1998. IEEE Comp. Soc. Press.

    Google Scholar 

  13. H. Hoppe. View-dependent refinement of progressive meshes. In ACM Computer Graphics Proceedings, Annual Conference Series, (SIGGRAPH’ 97), pages 189–198, 1997.

    Google Scholar 

  14. R. Klein and S. Gumhold. Data compression of multiresolution surfaces. In Visualization in Scientific Computing’ 98, pages 13–24. Springer-Verlag, 1998.

    Google Scholar 

  15. M. Lee, L. De Floriani, M., and H. Samet. Constant-time neighbor finding in hierarchical meshes. In Proceedings International Conference on Shape Modeling, Genova (Italy), May 7–11 2001. in print.

    Google Scholar 

  16. D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygonal environments. In ACM Computer Graphics Proceedings, Annual Conference Series, (SIGGRAPH’ 97), pages 199–207, 1997.

    Google Scholar 

  17. P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner. Real-time, continuous level of detail rendering of height fields. In Computer Graphics Proceedings, Annual Conference Series (SIGGRAPH’ 96), ACM Press, pages 109–118, New Orleans, LA, USA, Aug. 6–8 1996.

    Google Scholar 

  18. M. Ohlberger and M. Rumpf. Adaptive projection operators in multiresolution scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 5(1):74–93, 1999.

    Article  Google Scholar 

  19. J. Popovic and H. Hoppe. Progressive simplicial complexes. In ACM Computer Graphics Proceedings, Annual Conference Series, (SIGGRAPH’ 97), pages 217–224, 1997.

    Google Scholar 

  20. K. J. Renze and J. H. Oliver. Generalized unstructured decimation. IEEE Computational Geometry & Applications, 16(6):24–32, 1996.

    Article  Google Scholar 

  21. J. R. Shewchuck. Tetrahedral mesh generation by delaunay refinement. In Proceedings 14th Annual Symposium on Computational Geometry, pages 86–95, Minneapolis, Minnesota, June 1998. ACM Press.

    Google Scholar 

  22. G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive forest split compression. In Computer Graphics (SIGGRAPH’ 98 Proceedings), pages 123–132. ACM Press, 1998.

    Google Scholar 

  23. Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework for visualizing regular volume data. In Proceedings IEEE Visualization’97, pages 135–142. IEEE Press, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Danovaro, E., De Floriani, L., Magillo, P., Puppo, E. (2001). Representing Vertex-Based Simplicial Multi-complexes. In: Bertrand, G., Imiya, A., Klette, R. (eds) Digital and Image Geometry. Lecture Notes in Computer Science, vol 2243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45576-0_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45576-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43079-7

  • Online ISBN: 978-3-540-45576-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics