Skip to main content

Queries Revisited

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2225))

Included in the following conference series:

Abstract

We begin with a brief tutorial on the problem of learning a finite concept class over a finite domain using membership queries and/or equivalence queries. We then sketch general results on the number of queries needed to learn a class of concepts, focusing on the various notions of combinatorial dimension that have been employed, including the teaching dimension, the exclusion dimension, the extended teaching dimension, the fingerprint dimension, the sample exclusion dimension, the Vapnik-Chervonenkis dimension, the abstract identification dimension, and the general dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

    MathSciNet  Google Scholar 

  2. D. Angluin. Negative results for equivalence queries. Machine Learning, 5:121–150, 1990.

    Google Scholar 

  3. E. M. Arkin, H. Meijer, J. S. B. Mitchell, D. Rappaport, and S. S. Skiena. Decision trees for geometric models. In Proceedings of the Ninth Annual Symposium on Computational Geometry, pages 369–378, San Diego, CA, 1993. ACM Press.

    Google Scholar 

  4. J. L. Balcázar, J. Castro, and D. Guijarro. Abstract combinatorial characterizations of exact learning via queries. In Proceedings of the 13th Annual Conference on Computational Learning Theory, pages 248–254. Morgan Kaufmann, San Francisco, 2000.

    Google Scholar 

  5. J. L. Balcázar, J. Castro, and D. Guijarro. A general dimension for exact learning. In Proceedings of the 14th Annual Conference on Computational Learning Theory, 2001.

    Google Scholar 

  6. J. L. Balcázar, J. Castro, D. Guijarro, and H.-U. Simon. The consistency dimension and distribution-dependent learning from queries. In Proceedings of the 10th International Conference on Algorithic Learning Theory-ALT’ 99, volume 1720 of LNAI, pages 77–92. Springer-Verlag, 1999.

    Google Scholar 

  7. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. J. ACM, 36:929–965, 1989.

    Article  MathSciNet  Google Scholar 

  8. A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on the number of examples needed for learning. Inform. Comput., 82:247–261, 1989.

    Article  MathSciNet  Google Scholar 

  9. R. Gavaldà. On the power of equivalence queries. In EUROCOLT: European Conference on Computational Learning Theory, pages 193–203. Clarendon Press, 1993.

    Google Scholar 

  10. S. A. Goldman and M. J. Kearns. On the complexity of teaching. J. of Comput. Syst. Sci., 50:20–31, 1995.

    Article  MathSciNet  Google Scholar 

  11. Y. Hayashi, S. Matsumoto, A. Shinohara, and M. Takeda. Uniform characterizations of polynomial-query learnabilities. In Proceedings of the 1st International Conference on Discovery Science (DS-98), volume 1532of LNAI, pages 84–92, 1998.

    Google Scholar 

  12. T. Hegedüs. Generalized teaching dimensions and the query complexity of learning. In Proceedings of the 8th Annual Conference on Computational Learning Theory, pages 108–117. ACM Press, New York, NY, 1995.

    Google Scholar 

  13. L. Hellerstein, K. Pillaipakkamnatt, V. Raghavan, and D. Wilkins. How many queries are needed to learn? In Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of Computing, pages 190–199, 1995.

    Google Scholar 

  14. R. Hyafil and R. L. Rivest. Constructing optimal binary trees is NP-complete. Information Processing Letters, 5:15–17, 1976.

    Article  MathSciNet  Google Scholar 

  15. N. Littlestone. Learning quickly when irrelevant attributes abound: A new linearthreshold algorithm. Machine Learning, 2:285–318, 1988.

    Google Scholar 

  16. W. Maass and G. Turán. Lower bound methods and separation results for on-line learning models. Machine Learning, 9:107–145, 1992.

    MATH  Google Scholar 

  17. M. Moshkov. Test theory and problems of machine learning. In Proceedings of the International School-Seminar on Discrete Mathematics and Mathematical Cybernetics, pages 6–10. MAX Press, Moscow, 2001.

    Google Scholar 

  18. A. Shinohara and S. Miyano. Teachability in computational learning. New Generation Computing, 8(4):337–348, 1991.

    Article  Google Scholar 

  19. L. G. Valiant. A theory of the learnable. Commun. ACM, 27:1134–1142, 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angluin, D. (2001). Queries Revisited. In: Abe, N., Khardon, R., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2001. Lecture Notes in Computer Science(), vol 2225. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45583-3_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45583-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42875-6

  • Online ISBN: 978-3-540-45583-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics