Abstract
In electronic commerce, traded digital objects are likely associated with several numerical values as well as their prices. These values may change unpredictably over time and bring risks both to the providers and to the consumers of the application. One possible strategy for hedging the risks is to introduce derivatives regarding the uncertain values. This paper shows a theoretical pricing equation of the derivatives when the underlying digital objects have systematic default or revocation risks. We can make use of this pricing to estimate the risks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Reiter, M. K., Stubblebine, S. G.: Resilient Authentication Using Path Independence. IEEE Trans. Comput. 47 (1998) 1351–1362
Xiao, X., Ni, L. M.: Internet QoS: A Big Picture. IEEE Network. 13 (1999) 8–18
Katzenbeisser, S., Petitcolas, F. (eds.): Information Hiding Techniques for Steganography and Digital Watermarking. Artech House Publishers, Boston London (2000)
Reiter, M. K., Stubblebine, S. G.: Authentication Metric Analysis and Design. ACM Trans. Info. & Sys. Security 2 (1999) 138–158
Black, F., Scholes, M.: The Pricing of Options and Corporate Liabilities. J. Political Econ. 81 (1973) 637–654
Eng, T., Okamoto, T.: Single-Term Divisible Electronic Coins. In: De Santis, Alfredo (ed.): Advances in Cryptology — EUROCRYPT’94. Lecture Notes in Computer Science, Vol. 950. Springer-Verlag, Berlin Heidelberg New York (1995) 306–319
Björk, T.: Arbitrage Theory in Continuous Time. Oxford University Press, New York (1998)
Matsuura, K.: Security Tokens and Their Derivatives. Technical Reports, Centre for Communication Systems Research, University of Cambridge (2001) http://www.ccsr.cam.ac.uk/techreports/tr29/index.html
Merton, R. C.: Option Pricing When Underlying Stock Returns are Discontinuous. J. Financial Econ. 3 (1976) 125–144
Sharpe, W. F.: Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. J. Finance 19 (1964) 425–442
Colwell, D. B., Elliott, R. J.: Discontinuous Asset Prices and Non-Attainable Contingent Claims. Math. Finance 3 (1993) 295–308
Jarrow, R. A., Rosenfeld, E. R.: Jump Risks and the Intertemporal Capital Asset Pricing Model. J. Business 57 (1984) 337–351
Buldas, A., Laud, P., Lipmaa, H.: Accountable Certificate Management Using Undeniable Attestations. In: Proc. 7th ACM Conf. on Comp. & Comm. Security, Athens (2000) 9–18
Gassko, I., Gemmell, P. S., MacKenzie, P.: Efficient and Fresh Certification. In: Imai, H., Zheng, Y. (eds.): Public Key Cryptography — PKC 2000. Lecture Notes in Computer Science, Vol. 1751. Springer-Verlag, Berlin Heidelberg New York (2000) 342–353
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Matsuura, K. (2001). A Derivative of Digital Objects and Estimation of Default Risks in Electronic Commerce. In: Qing, S., Okamoto, T., Zhou, J. (eds) Information and Communications Security. ICICS 2001. Lecture Notes in Computer Science, vol 2229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45600-7_11
Download citation
DOI: https://doi.org/10.1007/3-540-45600-7_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42880-0
Online ISBN: 978-3-540-45600-1
eBook Packages: Springer Book Archive