Abstract
A factor in the complexity of conventional algorithms for model checking Computation Tree Logic (CTL) is the size of the formulae, and, more precisely, the number of fixpoint operators. This paper addresses the following questions: given a CTL formula f, is there an equivalent formula with fewer fixpoint operators? and how term rewriting techniques may be used to find it? Moreover, for some sublogics of CTL, e.g. the sub-logic NF-CTL (no fixpoint computation tree logic), more efficient verification procedures are available. This paper also addresses the problem of testing whether an expression belongs or not to NF-CTL, and providing support in the choice of the most efficient amongst different available verification algorithms. In this direction, we propose a rewrite system modulo AC, and discuss its implementation in ELAN, showing how this rewriting process can be plugged in a formal verification tool.
Partially supported by projects CNPq-INRIA (FERUS) and CNPq-NSF (Formal Verification of Systems of Industrial Complexity).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
NuSMV home page. http://nusmv.irst.itc.it, accessed on Apr. 23 2002.
A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In Tools and Algorithms for Construction and Analysis of Systems, pages 193–207, 1999.
P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen. An Overview of ELAN. In C. Kirchner and H. Kirchner, editors, Proc. Second Intl. Workshop on Rewriting Logic and its Applications, Electronic Notes in Theoretical Computer Science, Pont-à-Mousson (France), Sept. 1998. Elsevier.
E. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons for branching time temporal logic. In Logics of Programs: Workshop, volume 131 of LNCS, pages 52–71. Springer Verlag, 1981.
E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press.
D. Déharbe and A. M. Moreira. Symbolic model checking with fewer fixpoint computations. In World Congress on Formal Methods and their Application(FM’99), volume 1708 of LNCS, pages 272–288, 1999.
N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of Theorectical Computer Science, chapter 15. Elsevier Science Publishers B.V., 1990.
M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for finite-state verification. Technical Report UM-CS-1998-035, 1998.
S. Graf. Logique du temps arborescent pour la spécification et preuve de programmes. PhD thesis, Institut National Polytechnique de Grenoble, France, 1984.
H. Iwashita, T. Nakata, and F. Hirose. CTL model checking based on forward state traversal. In ICCAD’96, page 82, 1996.
J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM Journal on Computing, 15(4):1155–1194, 1986.
R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton Univ Pr, 1995.
K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
P.-E. Moreau, C. Ringeissen, and M. Vittek. A pattern-matching compiler. In D. Parigot and M. van den Brand, editors, Proceedings of the 1st International Workshop on Language Descriptions, Tools and Applications, volume 44, Genova, april 2001. Electronic Notes in Theoretical Computer Science.
J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR. In Procs. 5 th international symposium on programming, volume 137 of Lecture Notes in Computer Science, pages 244–263. Springer Verlag, 1981.
A. Rubio. A Fully Syntactic AC-RPO. In P. Narendran and M. Rusinowitch, editors, Rewriting Techniques and Applications, 10th International Conference, RTA-99, LNCS 1631, pages 133–147, Trento, Italy, July 2–4, 1999. Springer-Verlag.
R. Socher-Ambrosius. Boolean Algebra Admits No Convergent Term Rewriting System. In R. V. Book, editor, Rewriting Techniques and Applications, 4th International Conference, RTA-91, LNCS 488, pages 264–274, Como, Italy, Apr. 10–12, 1991. Springer-Verlag.
L. Vigneron. Automated Deduction Techniques for Studying Rough Algebras. Fundamenta Informaticae, 33(1):85–103, Feb. 1998.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Déharbe, D., Moreira, A.M., Ringeissen, C. (2002). Improving Symbolic Model Checking by Rewriting Temporal Logic Formulae. In: Tison, S. (eds) Rewriting Techniques and Applications. RTA 2002. Lecture Notes in Computer Science, vol 2378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45610-4_15
Download citation
DOI: https://doi.org/10.1007/3-540-45610-4_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43916-5
Online ISBN: 978-3-540-45610-0
eBook Packages: Springer Book Archive