Skip to main content

Disjunctive Explanations

  • Conference paper
  • First Online:
Logic Programming (ICLP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2401))

Included in the following conference series:

Abstract

Abductive logic programming has been widely used to declaratively specify a variety of problems in AI including updates in data and knowledge bases, belief revision, diagnosis, causal theory, and default reasoning. One of the most significant issues in abductive logic programming is to develop a reasonable method for knowledge assimilation, which incorporates obtained explanations into the current knowledge base. This paper offers a solution to this problem by considering disjunctive explanations whenever multiple explanations exist. Disjunctive explanations are then to be assimilated into the knowledge base so that the assimilated program preserves all and only minimal answer sets from the collection of all possible updated programs. We describe a new form of abductive logic programming which deals with disjunctive explanations in the framework of extended abduction. The proposed framework can be well applied to view updates in disjunctive databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abiteboul. Updates, a new frontier. In: Proceedings of the 2nd International Conference on Database Theory, Lecture Notes in Computer Science, 326, Springer, pages 1–18, 1988.

    Google Scholar 

  2. F. Bry. Intensional updates: abduction via deduction. In: Proceedings of ICLP’ 90, pages 561–575, MIT Press, 1990.

    Google Scholar 

  3. L. Console, D. Theseider Dupré and P. Torasso. On the relationship between abduction and deduction. Journal of Logic and Computation, 1:661–690, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Eiter, G. Gottlob, and H. Mannila. Adding disjunction to Datalog. In: Proc. 13th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 267–278, 1994.

    Google Scholar 

  5. R. Fagin, J. D. Ullman, and M. Y. Vardi. On the semantics of updates in databases (preliminary report). In: Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 352–365, 1983.

    Google Scholar 

  6. R. Fagin, G. M. Kuper, J. D. Ullman, and M. Y. Vardi. Updating logical databases. In: Advances in Computing Research, Volume 3, pages 1–18, JAI Press, 1986.

    Google Scholar 

  7. J. Fernández, J. Grant and J. Minker. Model theoretic approach to view updates in deductive databases. Journal of Automated Reasoning, 17:171–197, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. H. Fung and R. Kowalski. The iff procedure for abductive logic programming. Journal of Logic Programming, 33:151–165, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9:365–385, 1991.

    Article  Google Scholar 

  10. J. Grant, J. Horty, J. Lobo and J. Minker. View updates in stratified disjunctive databases. Journal of Automated Reasoning, 11:249–267, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Helft, K. Inoue, and D. Poole. Query answering in circumscription. In: Proceedings of IJCAI-91, pages 426–431, Morgan Kaufmann, 1991.

    Google Scholar 

  12. K. Inoue. Hypothetical reasoning in logic programs. Journal of Logic Programming, 18(3):191–227, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Inoue. A simple characterization of extended abduction. In Proceedings of the 1st International Conference on Computational Logic, Lecture Notes in Artificial Intelligence, 1861, pages 718–732, Springer, 2000.

    Google Scholar 

  14. K. Inoue and C. Sakama. Abductive framework for nonmonotonic theory change. In: Proceedings of IJCAI-95, pages 204–210, Morgan Kaufmann, 1995.

    Google Scholar 

  15. K. Inoue and C. Sakama. A fixpoint characterization of abductive logic programs. Journal of Logic Programming, 27(2):107–136, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Inoue and C. Sakama. Computing extended abduction through transaction programs. Annals of Mathematics and Artificial Intelligence, 25(3,4): 339–367, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. C. Kakas, R. A. Kowalski and F. Toni. The role of abduction in logic programming. In: D. M. Gabbay, C. J. Hogger and J. A. Robinson (eds.), Handbook of Logic in Artificial Intelligence and Logic Programming, volume 5, pages 235–324, Oxford University Press, 1998.

    Google Scholar 

  18. A. C. Kakas and P. Mancarella. Database updates through abduction. In: Proceedings of the 16th International Conference on Very Large Databases, pages 650–661, Morgan Kaufmann, 1990.

    Google Scholar 

  19. A. C. Kakas and P. Mancarella. Knowledge assimilation and abduction. In: J. P. Martins and M. Reinfrank (eds.), Truth Maintenance Systems, Lecture Notes in Artificial Intelligence, 515, 54–70, Springer, 1991.

    Google Scholar 

  20. K. Konolige. Abduction versus closure in causal theories. Artificial Intelligence, 53:255–272, 1992.

    Article  MathSciNet  Google Scholar 

  21. V. Lifschitz, L. R. Tang, and H. Turner. Nested expressions in logic programs. Annals of Mathematics and Artificial Intelligence, 25:369–389, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  22. F. Lin. On strongest necessary and weakest sufficient conditions. In: Proceedings of the 7th International Conference on Principles of Knowledge Representation and Reasoning, pages 167–175, Morgan Kaufmann, 2000.

    Google Scholar 

  23. F. Lin and J.-H. You. Abductive logic programming: a new definition and an abductive procedure based on rewriting. In: Proceedings of IJCAI-01, pages 655–661, Morgan Kaufmann, 2001.

    Google Scholar 

  24. V. W. Marek, and M. Truszczyński. Stable models and an alternative logic programming paradigm. In: K. R. Apt et al., editors, The Logic Programming Paradigm—A 25 Year Perspective, pages 375–398, Springer, 1999.

    Google Scholar 

  25. F. Rossi and S. A. Naqvi. Contributions to the view update problem. In: Proceedings of ICLP’ 89, pages 398–415, MIT Press, 1989.

    Google Scholar 

  26. C. Sakama and K. Inoue. Updating extended logic programs through abduction. In: Proceedings of the 5th International Conference on Logic Programming and Nonmonotonic Reasoning, Lecture Notes in Artificial Intelligence, 1730, pages 147–161, Springer, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inoue, K., Sakama, C. (2002). Disjunctive Explanations. In: Stuckey, P.J. (eds) Logic Programming. ICLP 2002. Lecture Notes in Computer Science, vol 2401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45619-8_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-45619-8_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43930-1

  • Online ISBN: 978-3-540-45619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics