Skip to main content

The Reflection Theorem: A Study in Meta-theoretic Reasoning

  • Conference paper
  • First Online:
Automated Deduction—CADE-18 (CADE 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2392))

Included in the following conference series:

Abstract

The reflection theorem has been proved using Isabelle/ZF. This theorem cannot be expressed in ZF, and its proof requires reasoning at the meta-level. There is a particularly elegant proof that reduces the meta-level reasoning to a single induction over formulas. Each case of the induction has been proved with Isabelle/ZF, whose built-in tools can prove specific instances of the reflection theorem upon demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grzegorz Bancerek. The reflection theorem. Journal of Formalized Mathematics, 2, 1990. http://megrez.mizar.org/mirror/JFM/Vol2/zf_refle.html.

  2. Johan G. F. Belinfante. Computer proofs in Gödel’s class theory with equational definitions for composite and cross. Journal of Automated Reasoning, 22(3):311–339, March 1999.

    Google Scholar 

  3. Yves Bertot, Gilles Dowek, André Hirschowitz, Christine Paulin, and Laurent Théry, editors. Theorem Proving in Higher Order Logics: TPHOLs’ 99, LNCS 1690. Springer, 1999.

    MATH  Google Scholar 

  4. Frank R. Drake. Set Theory: An Introduction to Large Cardinals. North-Holland, 1974.

    Google Scholar 

  5. Kurt Gödel. The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory. In S. Feferman et al., editors, Kurt Gödel: Collected Works, volume II. Oxford University Press, 1990. First published in 1940.

    Google Scholar 

  6. G. P. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science, 1:27–57, 1975.

    Article  MathSciNet  Google Scholar 

  7. Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. Locales: A sectioning concept for Isabelle. In Gilles Dowek, André Hirschowitz, Christine Paulin, and Laurent Théry, editors. Theorem Proving in Higher Order Logics: TPHOLs’ 99, LNCS 1690. Springer, 1999 Bertot et al. [3], pages 149–165.

    Chapter  Google Scholar 

  8. Kenneth Kunen. Set Theory: An Introduction to Independence Proofs. North-Holland, 1980.

    Google Scholar 

  9. Andrzej Mostowski. Constructible Sets with Applications. North-Holland, 1969.

    Google Scholar 

  10. Lawrence C. Paulson. Set theory for verification: I. From foundations to functions. Journal of Automated Reasoning, 11(3):353–389, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  11. Lawrence C. Paulson. Set theory for verification: II. Induction and recursion. Journal of Automated Reasoning, 15(2):167–215, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  12. Lawrence C. Paulson and Krzysztof Grcabczewski. Mechanizing set theory: Cardinal arithmetic and the axiom of choice. Journal of Automated Reasoning, 17(3):291–323, December 1996.

    Google Scholar 

  13. The QED manifesto. http://www-unix.mcs.anl.gov/qed/, 1995.

  14. Art Quaife. Automated deduction in von Neumann-Bernays-Gödel set theory. Journal of Automated Reasoning, 8(1):91–147, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  15. Markus Wenzel. Type classes and overloading in higher-order logic. In Elsa L. Gunter and Amy Felty, editors, Theorem Proving in Higher Order Logics: TPHOLs’ 97, LNCS 1275, pages 307–322. Springer, 1997.

    Chapter  Google Scholar 

  16. Markus Wenzel. Isar: A generic interpretative approach to readable formal proof documents. In Gilles Dowek, André Hirschowitz, Christine Paulin, and Laurent Théry, editors. Theorem Proving in Higher Order Logics: TPHOLs’ 99, LNCS 1690. Springer, 1999 Bertot et al. [3], pages 167–183.

    Chapter  Google Scholar 

  17. Andrew J. Wiles. Modular elliptic curves and Fermat’s Last Theorem. Annals of Mathematics, 141(3):443–551, 1995.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paulson, L.C. (2002). The Reflection Theorem: A Study in Meta-theoretic Reasoning. In: Voronkov, A. (eds) Automated Deduction—CADE-18. CADE 2002. Lecture Notes in Computer Science(), vol 2392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45620-1_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-45620-1_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43931-8

  • Online ISBN: 978-3-540-45620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics